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ABSTRACT

Recently switched antenna array, sometimes also called Time
Division Multiplexing (TDM), receivers have found their way
in systems suitable for, e.g. indoor positioning. Such sys-
tems use low-power and low-cost transmitters and receivers,
having significant differences in their local reference clocks.
Consequently, the received signal in the base-band carries
a carrier-frequency offset (CFO). This CFO has to be esti-
mated from the observed signal and compensated for. In
this paper Cramér-Rao lower bounds on the CFO for two
data models of switched antenna array receivers signals are
derived. Furthermore a closed form Maximum Likelihood
Estimator (MLE) for the CFO and the antenna data is pro-
posed. The derived CRLBs are used to study the statistical
performance of the maximum likelihood estimator.

1. INTRODUCTION

The concept of switched antenna (array) receivers has been
used in communication systems for at least 80 years [1]. Ini-
tially, switched antenna receivers have been used to exploit
the spatial diversity of radio channels and later also to utilize
their directivity [2] to increase performance of communica-
tion systems. Such systems switch between the receive an-
tennas with a very low frequency, where small is understood
in terms of the signal bandwidth. In such systems the CFO
estimation/correction can be carried out in the same way as
in single channel receivers.

Recently, time division multiplexing (TDM) has been
also proposed for multi-antenna wireless receivers, to reduce
hardware cost, see [3] and the references therein. In contrast
to diversity receivers, TDM multi-antenna receivers switch
between the antenna ports within a fraction of a symbol du-
ration. In general, multi-antenna communication receivers,
used in SIMO or MIMO systems, suffer from carrier fre-
quency offsets as well as their single channel predecessor.
A comprehensive review of CFO correction techniques for
MIMO communication systems can be found in, e.g. [4].

The concept of switched antenna array receivers has been
also in use for over a decade in SIMO or MIMO radio chan-
nel sounders [5, 6]. Here a switched antenna array receiver
measures the outputs of an antenna array, in a short se-
quence. The switching times are typically in the order of
some hundreds of nanoseconds up to some microseconds, i.e.,
the switching time is chosen to be larger than the maximum
observable multipath delay of the measured radio channels.
Radio channel sounders use sophisticated reference oscilla-
tors at the transmitter and the receiver, such as rubidium
references. For such systems the carrier frequency offsets are
so small that they can been neglected.

In [7], a single channel direction finding system is pro-
posed using antenna switching and phased locked loops. In
this system the carrier frequency offset has been corrected
using a PLL.
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Recently, the switched antenna array receiver concept
has been used in low-power and low-cost systems, e.g. for
indoor positioning [8]. Such systems use low-cost reference
oscillators with low accuracy and stability. Consequently,
the received signal in the base-band contains a carrier fre-
quency offset. A carrier frequency offset has a significant
impact on the antenna data vector (ADV), i.e., the (sequen-
tially) observed output of the antenna array. To compensate
the carrier frequency offset, the antenna switching sequence
has to be chosen such that the carrier frequency offset and
the ADV can be estimated with low variance form observa-
tions.

Due to the knowledge of the authors the problem of joint
CFO and ADV estimation in switching antenna receivers
for angle of arrival based positioning has not been studied
so far. Especially, the impact of the switching sequence on
the ADV estimates has not been studied in the literature.
Nevertheless, the underlying estimation problem is notably
similar to the joint CFO and channel estimation problem
studied in [4, 9, 10, 11]. I.e. similar expressions for the
Cramér-Rao Lower Bound are obtained. On the other hand,
results on the training sequence design for channel estimation
cannot be applied to the switching sequence design problem
at hand.

In this paper, We introduce two data models for the sig-
nals, observed by a switched antenna array receiver. Fur-
thermore, we derive a closed form (search free) maximum
likelihood estimator for the CFO and the ADV. We propose
also an approximate MLE having low computational com-
plexity, jet exhibiting very good statistical performance in
Monte-Carlo simulations. We derive the Cramér-Rao Lower
Bound on the model parameters and study the impact of
different switching sequences on the bound as well as on the
MLEs.

The paper is structured as follows. In Section 2, the data
models are introduced. The Cramér-Rao Lower Bounds on
the model parameters are derived, in Section 3. The pro-
posed ML-estimator and a low complexity approximate MLE
for the CFO and ADV are derived in Section 4. In Sec-
tion 5, the CRLB is compared with the performance of the
Maximum-Likelihood estimator (MLE). Section 6 concludes
the paper.

2. DATA MODELS

The physical setup is illustrated in Figure 1. We have only
one receiver, measuring each antenna in an order described
by a predetermined switching sequence. The switching se-
quence is contained in the switching matrix S. The rows of
S denote time-instants and columns denote antennas. For
example, {S},, would be 1 if the second array element is
measured at the third time-instant. The receiver switches
between antennas every Ts seconds and down-converts the
received signal to baseband. It is assumed, that the transmit
signal is a constant wave signal (CW) while the observation



Switch

" . / Plane Wavefront

Figure 1: Physical Model

is acquired. This is a realistic assumption, in fact a similar
system configuration is used in the angle based positioning
system described in, e.g. [8].

2.1 Data Model I

The data model introduced in this section is solely designed
to study the impact of the used switching sequence and the
CFO on the variance of unbiased direction of arrival es-
timates. We assume that the receive antenna array is a
uniform linear array (ULA) with L elements. The centre-
element is considered to be the reference antenna. Further-
more, the channel is restricted to be a single path AWGN
channel. The received signal y € CN*? is given by

y = ®(Aw)Sa(¢) +w (1)
=s(0) +w, 2)

where ®(Aw) € CN*¥ is a diagonal matrix with diagonal
elements e 72“*Ts | 1 is the sampling index, Aw is the car-
rier frequency offset (CFO), S is the switching matrix, and
a(¢) is the steering vector. Observe that, in contrast to the
joint CFO and channel estimation problem, the matrix S
is orthogonal but not necessarily Toeplitz. An attenuation
of the TX-signal has been omitted in this model, adding a
weight does not provide additional insight into the estima-
tion problem for a single-path channel. The Direction of
Arrival (DoA) is contained in the steering vector as cos(¢),
if the angles are measured from the end-fire direction. To
simplify the calculation of the Cramér-Rao bound we make
a mapping f : ¥ — kdcos(¢), where k is the wave-number
and d is the distance between the elements of the antenna
array'. The mapping f : ¥ — kdcos(¢) is an one-to-one
mapping for angles 0 < ¢ < 7, provided d is smaller than
A/2, where X is the wavelength of the signal. The vector w
describes i.i.d. circular, complex, normal distributed obser-
vation noise, i.e. w ~ CN(0,021). The switching matrix S
is an N X L matrix. The parameter vector to be estimated
is

0=[2w o7 3)

In the following it is assumed that N = k- L, i.e., the antenna
array outputs are sampled k times, each.

2.2 Data Model II

In the second data model we generalize the first data model
and remove the constraints on the structure of the antenna
array output signal. Therefore, we define an Antenna Data
Vector (ADV) x € CY*!| which implicitly contains informa-
tion about the array geometry and the Channel State Infor-
mation (CSI). The received signal y € C*E*! is now given

1For further details on ideal ULA steering vector modelling the
reader is referred to [12]
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by
y=P(Aw)Sx+w (4)
=s(0) +w. (5)
Here x can be understood as the output of an ideal multi an-

tenna receiver, using L identical chains for down-conversion
to the base-band?. The parameter vector 8 is given by

6= 2w xn x|, (6)
where xg = R(x) and x; = J(x).

3. DERIVATION OF THE CRLB

In the following we derive the Cramér-Rao Lower Bound [13]
for the model parameters of both data models.

3.1 Data Model I
The probability distribution function of y is

1 - (y—s(0) 7 (y—s(8))
fx(yl0) = KL ,2kL © &

(7)

The Fisher information matrix is derived using expres-
sions enumerated in [6, p. 54]. We have

D(0) = %S(e)
= [ 52s(0) s(6) |
=[ —jT:E®(Aw)Sa(v) —j®(Aw)SZa(v)) |,

which is also

D(0) = —j®(Aw) [ T:ESa(y) SZa(y) |, (8)

where E and Z are diagonal matrices with diagonal ele-
ments —

55— and f%,...,%, respectively.

The Fisher information matrix is given by®

3(0) = = - R{D(O)"D(®)}. 9)

Ow

Substituting (8) in (9), and using Q = (E)?, equation (10)
is obtained for the FIM.
J() =

2 [ T?a(y)"S"QSa(y)
o2 | Tsa(y)"ZST=ESa(y)

Tsa()*STESZa(v)

a() 27 S SZa(y)
(10)

The Cramér-Rao Lower Bound is the inverse of the FIM, i.e.

CRLB(6:;) = [37'(0)],, -

This bound is used to study the influence of S on the lower
bound of unbiased estimates of Aw and %, in Section 5.

20bserve that the assumption of L identical down-conversion
chains is not realistic in practice, especially for low cost and low
power receivers.

3()H denotes the hermitian transpose.



3.2 Data Model II

For Data Model II, the probability distribution function is
given by (7) as well. From (4), we have

D(9) = [ ®'(Aw)Sx @(Aw)S —j®(Aw)S |
_ ®(Aw)[ ESx S —jS ],

where = is, as before, a diagonal matrix with diagonal ele-

ments — &=L+ EE=L Using (9), we get
9 xH8TQsx —x¥sT=s xEsT=s
J() == | -s"ESx; sTs 0 (13)
9w \ STESxR 0 sTs

The Cramér-Rao lower bound is the inverse of the FIM, i.e.

CRLB(6;) = [37'(6)]

Using the matrix inversion lemma, we can derive the
CRLB for Aw in closed form. The CRLB is

o

-1
CRLB(Aw) (x"sT=PiEsx) ,  (14)

where P7 is the projector on the null-space of S, defined as
Pr =1-Sst,
using the pseudo-inverse ST of S.

4. MAXIMUM LIKELTHOOD ESTIMATOR

In this section a maximum likelihood estimator for Aw and
x based on Data model II is derived. The log-likelihood
function is

£(8w,x,0°ly) = ~kLlog(mo?) — — [ly ~ ®(Aw)Sx|*.

(15)
The maximum likelihood estimate is
{AAUJ,)A(, &2} = arg max L(Aw,x,0°y). (16)

Since 62 > 0 the maximizer Aw,% of (16) is independent
of 02,. Consequently, the maximization problem (16) can be
reduced to

{Ab, f(} = arg min ly — ®(Aw)Sx|”. (17)

The minimization is quadratic in x and can be solved in
closed form. It is easy to see that the LS-solution of (17)
with respect to x, given Aw is?

—1
x = (SHS) SY®" (Aw)y. (18)
Substituting x in (17) by (18) yields
- -1 2
Aw = arg nA1in y — ®(Aw)S (SHS) S7e* (Aw)y
(19)

Introducing the projection on the vector space spanned by
S, Ps = SS™, (19) can be written as

Aw = arg rgin ly — ®(Aw)Ps®" (Aw) y|*. (20)

4A* denotes element-wise conjugation of A.
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Observing that ®(Aw)®* (Aw) = I, and using the projec-
tor to the null-space of S, P&, the following expression is
obtained

- 2
Aw = arg min H@(Aw)Pfg*I)* (Aw) yH . (21)
Expression (21) can be rewritten as
Aw = arg n&inyH@(Aw)Péé* (Aw)y. (22)

Using the matrix-vector exchange
" (Aw)y = diag{y}a” (Aw),

where the elements of the vector a(Aw) are the diagonal
elements of the matrix ®(Aw), and observing that S is real,
equation (22) can be expressed as

Aw = arg mAin a” (Aw)diag {y} Psdiag {y*}a (Aw). (23)

As it is well known from root-MUSIC [14], the minimization
problem (23), being non-linear in Aw, can be relaxed and
rewritten as a polynomial rooting problem. Furthermore,
one can apply the same spectral factorization approach pro-
posed in [15], leading to a significant reduction in compu-
tational complexity. This is especially true since only one
root, the magnitude largest, has to be found from the fac-
tored polynomial.

An estimate of x, using A®, can be obtained by (18).
Furthermore, an estimate of o2 is given by

~2

1
= H-DL ly — ®(Aw)Sx|?,

which can be useful to estimate, e.g., the current SNR of x.
The computational complexity of the maximum likelihood
estimator derived so far is largely determined by the com-
plexity of the root finding algorithm used. Stable root finding
algorithms have computational complexity O((kL)?), [16].
The computational complexity can be reduced using an
approximate ML-estimator. Observe that the columns of S
are orthogonal due to the design of the receiver, i.e. only
one antenna port is measured at a time. Consequently the
matrix S¥S is diagonal and so is its inverse. Therefore,
Qs = S(s”s)™> (24)
is an orthonormal basis for S. It is easy to see that, using
Qs, equation (23) may be rewritten as

N 2
K = argmin [y]* - [a” (Aw) diag {y} Qs| . (25)

Since the norm ||y|| is independent of Aw the minimization
problem (25) reduces to the maximization problem

. 2
Aw = arg max HaH (Aw) diag {y} QSH . (26)

The maximization problem (26) can be solved using a line
search over Aw. Since a (Aw) is a complex exponential this
line search can be efficiently implemented using a FFT. The
accuracy of this estimator is limited by the length of the
FFT used. Therefore the estimator is an approximate MLE
and useful only up to a certain SNR. However, since the
SNR of a real receiver is always bounded, this estimator can
yield a good trade-off between accuracy and computational
complexity, as it is shown in the following section.



5. RESULTS

In the following, we discuss CRLBs obtained for different
switching sequences for Data Model I and compare the Maxi-
mum Likelihood estimates for Data Model II with the CRLB
using Monte Carlo simulations.

5.1 Data Model I

The Cramér-Rao bound for the CFO and the parameter 1
are shown in Figures 2 and 3. Here we have chosen a simple,
symmetric switching sequence given by

s={ & |

where I is an L x L identity matrix and Il is an L X L
exchange matrix. Both bounds decrease proportionally with
the number of antenna elements.

I,
11,
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Figure 2: Cramér-Rao bound for the CFO in Data Model I.
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Figure 3: Cramér-Rao bound for ¢ in Data Model I.

5.2 Data Model II

For Data Model II the CRLB and the statistical performance
of the MLE has been analysed for different switching se-
quences of the same length. To determine the variance of ap-
proximate ML-estimates Monte Carlo simulations have been
carried out, using (26). Examples for switching sequences
with L = 3 and k£ = 3 are shown in Figure 4. The CRLB
on the CFO for the four sequences is compared in Figure 5.
The bound is changing insignificantly for the sequences. The
variance of the estimates for the CFO Aw using switching
sequence a or c, are shown in Figures 6 and 8, respectively.
The approximate ML-estimates attain the CRLB for SNRs
higher than 10dB. The MSEs for estimates of the antenna
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data vector x for the same switching sequences are shown
in Figures 7 and 9. The estimates for x attain the CRLB
as well for SNRs higher than 10dB. Figure 6 and 8 show
also that the switching sequence used has an impact on the
behaviour of the MLE in the threshold region.

~

®

©

1 2

a

3 1 3 1 2

c

2 3
b

Figure 4: Switching Sequences used for comparison of MLEs
and CRLBs.

MSE (dB)

20 25 30 35
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Figure 5: Cramér-Rao Lower Bound for the CFO in Data
Model II for different switching sequences.

. . .
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6. CONCLUSIONS

We have introduced two models to study the statistical per-
formance of algorithms for CFO estimation in switched an-
tenna array receivers. Cramér-Rao Lower Bounds on the
model parameters have been derived. Furthermore, we de-
rived a closed-form MLE for the CFO and ADV and pro-
posed an approximate MLE having low complexity but very
good statistical performance for realistic SNRs. Further-
more, we have shown that the MLE attains the CRLBs for
high SNRs. Consequently, the CRLB expressions can be an
useful tool to optimize switching sequences in the high SNR.
region. To optimize switching sequences for low SNRs, i.e.
in the threshold region the CRLB is naturally not a suit-
able measure, since the data models are strongly non-linear
in the CFO. To optimize switching in the low SNR region
other bounds should be used.
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Figure 6: Comparison of the performance of an ML Estima-
tor for the CFO to the CRLB. Switching sequence used is

(a)

MSE Plot of ADV Estimator L=3k =3

— MSE of Maximum Likelihood ADV Estimator
R -~ ~CRLB

107 AN
107
o)
o
w
2

10°F

107'F

10’5 L L L L L L L

0 5 10 15 20 25 30 35 40
SNR (dB)

Figure 7: Comparison of the performance of an ML Esti-
mator for the antenna data vector to the CRLB. Switching
sequence used is (a)
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