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ABSTRACT

This paper presents the use of probabilistic latent semantic analysis
(PLSA) for modeling co-occurrence of overlapping sound events in
audio recordings from everyday audio environments such as office,
street or shop. Co-occurrence of events is represented as the de-
gree of their overlapping in a fixed length segment of polyphonic
audio. In the training stage, PLSA is used to learn the relation-
ships between individual events. In detection, the PLSA model
continuously adjusts the probabilities of events according to the
history of events detected so far. The event probabilities provided
by the model are integrated into a sound event detection system
that outputs a monophonic sequence of events. The model offers a
very good representation of the data, having low perplexity on test
recordings. Using PLSA for estimating prior probabilities of events
provides an increase of event detection accuracy to 35%, compared
to 30% for using uniform priors for the events. There are different
levels of performance increase in different audio contexts, with few
contexts showing significant improvement.

1. INTRODUCTION

A sound event can be described by a label that people would use to
name a recognizable situation in a given environment. Such a label
usually allows people to understand and associate the concept be-
hind it with other known events. Usually they will be simply defin-
ing recognizable everyday sounds. Labels could be denoting human
actions, like ”coughing”, ”sneezing”, denoting objects present on
the scene, like ”car”, ”whistle”, or denoting the sound itself, like
”dog barking”. The free description given to such events may vary
from one person to another, but the concept itself is generally under-
stood by anyone. Automatic audio scene analysis tries to find such
understandable labels, based on features extracted from or audio.
Event detection from audio has been studied for various ap-

plications, including audio scene recognition [1, 2, 3], analysis of
video sound tracks [4, 5], acoustic event detection [6]. In other
studies, individual sound events are considered to be characteristics
of the audio scene and used for audio context recognition without
actually naming the events themselves [7]. In general, these studies
employ a rather limited set of events, small set of environments, and
in many cases the sound events and audio examples are chosen so to
minimize overlapping between different categories. In case of over-
lapping sound events, the annotation considers the most prominent
one.
Our everyday environment is complex in sound events, and

there is usually a high degree of overlapping between the sound
events. As humans we can easily segregate sounds and identify
multiple events at the same time, but for automatic recognition, the
situation is challenging. There is little work that considers annotat-
ing specifically overlapping events, and even so, in [6] and [8], the
output of the systems is a sequence of non-overlapping events. The
assumption is that the detection result will contain at each time the
most prominent sound event from the mixture, and the evaluation
metric in [6] is developed for that situation. To our knowledge,
there is no work that considers modeling and detecting overlapping
events for event detection.
In [8] we presented a system for event detection in real life

recordings, with an average 30% accuracy for a number of 61 event
classes. The system is based on hidden Markov models (HMM)
trained on mel-frequency cepstral coefficients (MFCC) and Viterbi
decoding of best path through the HMM states. The attempt of
including count-based priors in the decoding process did not bring
any improvement to the performance.

In this paper we propose use of probabilistic latent seman-
tic analysis (PLSA) to obtain the prior probabilities for the sound
events. PLSA is widely used in text segmentation, for capturing
long term relationships between words in text. Other uses include
human action categorization in videos [9] and semantic concept an-
notation in audio [10]. In [10], the audio is first segmented into
homogeneous segments and a vocabulary is constructed by cluster-
ing those segments. The probabilistic model is used to discover the
topics existing in the audio clips and used in classification.

Our approach for learning the relationship between sound
events will be using PLSA to model the co-occurrence of annotated
events in the audio. We represent a fixed length segment of au-
dio by an M-dimensional vector, where M is the number of events
in the database. Each element m(e) represents the percentage of
the segment when the sound event e is active. We will use PLSA
for discovering the underlying topics in the database and estimate
prior probabilities for individual events e. These probabilities will
be integrated in the decoding stage of the event detection system
presented in [8].
The paper is organized as follows: Section 2 presents the de-

tails of the sound event detection system and the database. Section
3 presents the principles of probabilistic latent semantic analysis for
modeling overlapping sound events, event probabilities and model
evaluation. Section 4 presents experimental results: choosing pa-
rameters for the PLSA, estimated perplexities and integration of
PLSA based event probabilities in the event detection system. Fi-
nally, Section 5 provides the conclusions of this work.

2. THE EVENT DETECTION SYSTEM

This paper presents a sound event detection system that uses prob-
abilistic latent semantic analysis to provide prior probabilities to
events in the detection stage. We consider the task of recogniz-
ing and locating sound events in recordings containing overlapping
events. A previous version of the system was presented in [8],
where the detection stage used uniform and count based priors. A
better way of modeling the sound event probabilities should bring
improvement to the performance.

The work presented in this paper uses audio recorded in differ-
ent environments, with the aim of detecting predetermined classes
of sound events. The recordings are made in ten different audio
contexts: basketball game, beach, inside a bus, inside a car, office,
hallway, restaurant, shop, street and track&field stadium, and con-
tain highly overlapping events. The data consists of a total of 103
recordings. There are 8 to 14 recordings per context, with lengths
of 10 to 30 minutes, having a total duration of 1133 minutes.
The recordings are annotated to indicate presence/absence of

sound events as a function of time. The annotations mark start and
end times of sound events belonging to 61 classes; the annotated
events are overlapping, with no limit on the number of events that
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Table 1: Number of events annotated in each context

basketball 990 beach 738
bus 1729 car 582
office 1220 hallway 822
restaurant 780 shop 1797
street 827 tracknfield 793

can be active at the same time. In this sense, the data is polyphonic.
Within each context there are from 9 to 16 annotated event classes.
Some events are specific to contexts, for example ”car door”, while
others are present in more or in all the contexts, like for example
”speech” or ”footsteps”. Some events may be very short (”beep”),
others may extend for the whole duration of the file (”ventilation
noise”). The most quiet environment is inside of car, with a number
of 582 total annotated sound events, and the most complex is the
shop with almost 1800 annotated events. Table 1 presents informa-
tion about the number of events in each context.
The acoustic models of the event classes are constructed using

hidden Markov models (HMM) and mel-frequency cepstral coeffi-
cients (MFCCs) as features. The features for each annotated event
instance were calculated directly from the polyphonic mixture. In
the case when more events appear simultaneously, the same part
of the audio (therefore the same observation vectors) was assigned
to all the event classes present in that segment. The observations
calculated for individual events were used to construct the models
for each class.
The output of the system is a monophonic sequence containing

the most prominent events. This is obtained using the Viterbi algo-
rithm, performing both recognition and segmentation of the audio,
based on the 61 models. The event HMMs are connected into a
network. The PLSA will be integrated at the transitions from one
model to the other within the HMM network. At each step, the al-
gorithm will choose the new model based on inter-model transition
probabilities provided by event priors based on PLSA.

3. PROBABILISTIC LATENT SEMANTIC ANALYSIS

3.1 General concept

PLSA is a statistical technique for the analysis of co-occurrence
data, based on a mixture decomposition derived from a latent class
model. The most common application for latent semantic analysis
is analysis and retrieval of text documents. For a collection of text
documents D = d1, ..dN and a vocabularyW = w1, ..wM, by ignor-
ing the order in which words occur, the documents are summarized
as a co-occurrence matrix with terms c(wm,dn) representing how
many times word wm appeared in document dn.
PLSA models the probability of each co-occurrence as a mix-

ture of conditionally independent multinomial distributions. The
latent variable z ∈ Z = z1..zK in PLSA is called an aspect model
and in the text it represents topics. The joint probability model over
the documents and words is defined by

P(d,w) = P(d) ∑
z∈Z

P(w|z)P(z|d) (1)

The model can be equivalently parametrized by:

P(d,w) = ∑
z∈Z

P(z)P(d|z)P(w|z) (2)

The first formulation is the asymmetric formulation: for each
document d, a latent class is chosen conditionally to the document
according to P(z|d), and a word is generated from that class accord-
ing to P(w|z) (Figure 1.a). In the symmetric formulation (Figure
1.b), w and d are both generated from the latent class z in similar
ways, using the conditional probabilities P(d|z) and P(w|z).
The modeling assumption is that the conditional distributions

P(w|d) are approximated by a combination of factors P(w|z), with

Figure 1: Graphical model representation of the two formulations
of PLSA: (a) asymmetric, (b) symmetric

the mixing weights P(z|d) uniquely defining a point in the latent
space [11]. The model is obtained by expectation maximization al-
gorithm [12]. Each document is viewed as a mixture of topics, and
each topic is represented by a combination of the words. The num-
ber of topics is smaller than the size of the vocabulary or the number
of documents, leading to a robust estimation of the two components.

3.2 PLSA for modeling overlapping events

The concept of PLSA can be extended to model co-occurrence of
any pair of discrete variables. In our data, the sound events take the
role of words, and the documents are segments of audio. The main
difference between events in a segment and words in a text is that
the events can be overlapping, therefore appearing simultaneously,
not strictly as a sequence. We will consider co-occurrence of events
in fixed length audio segments.
Within a segment, we estimate for each event the percentage of

its active state. Each audio file will be represented by a matrix in
which rows represent the sound events and individual columns rep-
resent the active time of each event in consecutive time segments.
The process is illustrated in Figure 2.
We include a universal background model event (UBM) to be

present all the time in all the segments. This model represents the
overall properties of the data; it is trained on all the data and its role
in decoding is to capture the regions when no events of interest are
detected.
For the audio data, the count matrix C represents the event-by-

segment presence. We will use the following notations: e for events,
z for topics, s for segments. The conditional probabilities between
events and topics and topics and segments respectively are repre-
sented as a basis matrix B (event-by-topic) containing p(e|z) and a
gain matrix G (topic-by-segment) containing p(z|s). The matrices B
and G are obtained using the expectation maximization algorithm.
Their formulation is represented in Figure 3.

3.3 Obtaining the event probabilities from PLSA

The dependencies between events are modeled by topics obtained
using PLSA. The probabilities of events at each step in the decoding
will be calculated depending on a local topic defined by the events
that were recognized so far. We call this a history. The history
is obtained via Viterbi decoding and is represented as sequence of
non-overlapping events, due to the nature of the event detection sys-
tem. The next event in this sequence will be decoded by taking into
account relationships between the history and the possible events.
The probability of events given the history is obtained by:

p(e|h) = ∑
z

p(e|z)p(z|h) (3)

We will use a history of length L seconds and represent it as the
set of events that were recognized in the previous L seconds, h =
{e}tt−L.
The term p(e|z) is obtained directly in the model. The term

p(z|h) is the distribution of topics for history h. We will use the no-
tation p(z|{e}tt−L) for it, to explicitly include the information about
the history length. We calculate it as:

p(z|{e}tt−L) =
p({e}tt−L|z)p(z)

p({e}tt−L)
(4)
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Figure 2: Forming the events-to-segments count matrix based on the presence if audio events in each audio segment of a given length

Figure 3: Representation of the event co-occurrences in the PLSA
framework using a basis matrix B that represents conditional prob-
abilities of events by topics and a gain matrix G that represents the
conditional probabilities of topics by segments

The first term in the nominator represents the probability of the
history. For simplification, we assume independence of events, and
will calculate the probability of the history as the product of the
individual probabilities of events that are present in the history, nor-
malized by taking into account the cardinality of the set, |{e}tt−L|.

p({e}tt−L|z) ≈

[

∏
z

p(e|z)e∈{e}tt−L

]
1

|{e}t
t−L|

(5)

The second term in the nominator is the probability of the topics
and is calculated by summing over the N segments s in the gain
matrix G.

p(z) = ∑
s

p(z|s)p(s) =
1

N
∑ p(z|s) (6)

With these, we can now calculate the probabilities of events
given the recent history of L seconds:

p(e|{e}tt−L) = ∑ p(e|z)p(z|{e}tt−L) (7)

The beginning of the decoding presents a special situation. The
first calculation of priors has no history available, and the prob-
abilities have to be calculated based on the distribution of topics
observed in the training data:

p(e) = ∑ p(e|z)p(z) (8)

This forms an initial estimate for the priors and is used until we
accumulate enough history for making better predictions. When
using history, the event probabilities are being adapted continuously
during the decoding.

3.4 Evaluation of the PLSA model

A model q based on a training sample that was drawn from the
unknown distribution p is evaluated using the cross-entropy of the
models:

H(p,q) = −∑
e

p̃(e)log2q(e) = −
1

S
∑
e

log2q(e) (9)

where q(e) is the probability predicted by the model q, S is the
length of the sequence and p̃(e) is the observed distribution of the
test sample, 1/S because each sample appeared once in the test data
of size S.
In the evaluation of language models for automatic speech

recognition, a common evaluation measure derived from entropy

is perplexity, P = 2H(p), where H(p) is the entropy of the discrete
probability distribution p. Perplexity can be interpreted as how con-
fused is the model on the test data, having to choose uniformly and
independently among P possibilities. Better models q of the un-
known distribution p will tend to assign higher probabilities q(e) to
the test events, therefore they have lower perplexity.
We modify the interpretation of perplexity to our data. The

output of the detection system is a monophonic sequence, while the
annotation contains multiple events. This means there are a number
of events that represent a correct output: any of the events that are
marked active in the annotation. As an example, consider throwing
a fair die (uniform distribution over 6 discrete events) to obtain a
sequence of numbers. If we evaluate perplexity for modeling the
value of each event, the perplexity of the uniform distributionmodel
is 6. The model chooses among 6 possibilities. But if we evaluate
perplexity for the quality of odd or even in the sequence, there are
3 possible correct answers at each throw, and the perplexity of the
same model will be 2.
To calculate the entropy of the model we will use the total prob-

ability of the set of correct events:

q(x) = ∑
e∈{e}correct

q(e) (10)

In this way, the entropy represents the amount of the probability
mass that is assigned by the model to the correct events. The correct
events are the ones that are marked as being active in the considered
audio segment.

4. EXPERIMENTAL RESULTS

We evaluate the perplexity of the constructed model on data similar
to the training. The universal background model has to be part of
the PLSA model in order to have similar properties as the event
classes in the decoding process; when evaluating event detection
we consider only the classes of interest and do not count the UBM.
The history used for calculating the event priors can contain

errors, because it is the output of the events detection system and
it will naturally have some errors. To counteract the effect of class
confusions, we create noisy training data for the PLSA. We use a
classifier for isolated sound events [8] to classify the training data.
The resulting confusion matrix S(M×M) is used to smooth the clean

annotations by multiplying the count matrixC(M×N) with it:

C
noisy

(M×N)
= S(M×M)×C(M×N). (11)

1309



0 2 4 6 8 10 12 14 16 18 20

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

LSA SIZE

P
E

R
P

L
E

X
IT

Y

0 2 4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

LSA SIZE

P
E

R
P

L
E

X
IT

Y

Figure 4: Perplexity of PLSA model using clean and noisy training data for different size PLSA

Table 2: Perplexity of PLSA model for different size semantic
space. Test and train data are ground truth annotation

PLSA training segment length in seconds
size 5 10 15 30 45 60 90 120
6 1.7 1.7 1.7 1.6 1.5 1.5 1.5 1.5
8 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.4
10 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4
12 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3
14 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.3
16 1.4 1.4 1.4 1.3 1.3 1.2 1.3 1.3
18 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3
20 1.4 1.3 1.4 1.3 1.2 1.3 1.2 1.3

This way the predictions will be made based on counts of acoustic
confusions between the considered event classes.

4.1 Perplexity of the PLSA model

The test data for evaluating perplexity consists in ground truth an-
notations marked for the presence/absence of an acoustic event in
each segment. They are similar with the PLSA training data, but
used only as binary indicators, stating the event is or is not active in
the tested segment. The entropy will be calculated as presented in
the previous section, by considering the probability mass assigned
by the model to all the events marked active in the tested segment.

We need to choose the dimensionality of the semantic space and
the size of the segments representing the documents for the train-
ing. We will make the choice based on the perplexity evaluation.
The perplexity of a uniform distribution model on the test data was
calculated for comparison. Its value is between 9 and 10, consis-
tent with an average of 6 overlapping events in each time segment
(62/6≈ 10).
We calculated average perplexity in 5 folds, for different values

of training segment length and PLSA size. We used equal lengths
for training segments and history. They can have different lengths,
but we chose to have them the same length. The results are pre-
sented in Table 2. We choose to have the highest reduction in di-
mensionality that offers a good performance, and we settle for a
PLSA size of 12. To allow correcting errors in prediction based
on erroneously detected events, we would choose a short length
history. According to the numbers in Table 2, we choose a seg-
ment/history length of 30 seconds. To reiterate, perplexity can be
interpreted as the number of possibilities from which the model has
to choose uniformly, and in this case it is less than 2.

The values of the perplexity have a similar trend when the train-
ing data is smoothed using the confusion matrix. Figure 4 presents
perplexity of the PLSA model when trained using clean and noisy
data, for a PLSA size varying from 2 to 20. In both cases a size of 12
looks as acceptable choice, offering good dimensionality reduction
and small enough perplexity.
We compare the perplexity of the PLSA with history to the

possibility of using only the initial PLSA estimates. These do not
depend on history, their values are constant throughout the whole

Table 3: Perplexity of uniform distribution, PLSA without history
and PLSA with a 30 seconds history; mean and standard deviation
of perplexity values

uniform distrib 11.8 (4.0)
clean PLSA no history 2.2 (0.3)
training data PLSA with 30s history 1.3 (0.3)
noisy PLSA no history 8.8 (6.5)
training data PLSA with 30s history 3.9 (3.6)

detection step, and are calculated directly from the training data
according to equation 8. Table 3 presents the resulting perplexity
values for different methods of assigning probabilities to events:
uniform distribution of the event classes, PLSA with size 12 and no
history, PLSA with size 12 and history length 30 seconds. Results
are presented for the PLSA models trained using both clean and
noisy data.

When using the constant priors and no history in the perplexity
calculation, it appears that 50% of the probability mass is assigned
to the correct events – this seems to be already a very good model.
In reality, a large amount of this probability mass is explained by the
universal background model, which gets a very strong prior proba-
bility, being active in all segments. The probability mass assigned
to the events of interest is around 20%. The use of history reduces
the perplexity to almost half of this, still with a quite large amount
of probability mass explained by the UBM. The multiplication with
the confusion matrix smooths out the priors and reduces the proba-
bility mass associated with the UBM.

4.2 Sound event detection results

The accuracy of the detection is measured in terms of balanced F-
score between precision and recall. This metric has been developed
for acoustic event detection in case of polyphonic annotation and
monophonic output [6]. The precision represents the number of
events correctly detected. The output is considered correct if there
exists at least one annotated event whose temporal center is situated
between the timestamps of the system output, and the annotated
label and system output are the same, or if the temporal center of
the system output lies between the timestamps of at least one anno-
tated event and the annotated label and system output are the same.
The recall represents the number of events from the annotation that
were correctly detected. The annotated sound event is considered
correctly detected if there exists at least one system output whose
temporal center is situated between the timestamps of annotated
sound event and the labels are the same, or if the temporal center
of the annotated sound event lies between the timestamps of at least
one system output and the labels are the same.

We compare the performance of the detection system that in-
corporates PLSA derived priors with the baseline system from [8].
Table 4 presents event detection results for the baseline system and
for using event priors based on PLSA with and without history, and
event priors based on PLSA trained on the noisy data (ground truth
annotation smoothed with confusion matrix).
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Table 4: Event detection accuracy using PLSA based priors

baseline PLSA PLSA PLSAnoisy train
system no history with history with history
30.1% 32.5% 32.6% 34.9%

The predictions of the PLSA model are very good, and the per-
plexity reduction reflects this well. The performance of the event
detection system though does not improve very much. There could
be a number of reasons for this: erroneous predictions because of
incorrect history, a poor performance of the acoustic models, or the
limitation of outputting only one event when there are more events
overlapping.

If the history contains events that are not correct, this will affect
the probabilities estimated for the events when decoding the next
few events. To eliminate this possibility, we used ground truth as
history and tested the event detection system. The detailed results
can be found in Table 5. The average performance in these con-
ditions was 36.3%, not significantly higher than the 34.9 % perfor-
mance of the system that incorporates PLSA based on noisy data. A
closer analysis of the results reveals big differences in the influence
of the PLSA based priors to detecting events in different audio con-
texts. Contexts with very specific type of events like basketball and
track&field benefit mostly of the ground truth (GT) history. Con-
texts like bus, hallway, street get some improvement. The car is
one example of very sparse environment, for which the perplexities
were a lot larger than for the other contexts, and the detection results
with PLSA are lower than the ones of the baseline system.

The acoustic models are not powerful enough to offer higher
performance. Training acoustic models from complex polyphonic
data is challenging, and some refining is needed in selecting the
audio used for each class, in order to obtain better performing mod-
els. In the same time, the performance is limited by the fact that
we decode a monophonic sequence, while the annotations contain
overlapping events. For an average polyphony of 6 simultaneous
events, in the ideal case of decoding a correct event at each time,
the maximum recall is 1/6, and the precision would be 1, leading to
average maximum performance of about 28% (33% for 5, 40% for 4
simultaneously active events). The only way to overcome this prob-
lem is to find methods for outputting multiple overlapping events.

In our future work we will use sound source separation tech-
niques both in training and testing. In training, separation of sound
sources will help in improving the acoustic models, while in testing,
the method will provide a way to detect several overlapping sound
events.

5. CONCLUSIONS

This paper presented the use of probabilistic latent semantic anal-
ysis for estimating priors in a sound event detection system. The
performance of the event detection system is limited both by the
acoustic models and by decoding a monophonic output, and these
aspects need to be addressed in the future. The proposed method
based on PLSA solves the problem of including prior information
about event classes by estimating prior probabilities for individual
events in the event detection.

PLSA was used to model co-occurrence of events based on the
degree of their overlapping during a fixed length segment. The mod-
eling offers reliable priors for the events, based on the set of events
present in the decoded history. Errors in the decoded sequence can
influence the probability estimations for events to be decoded next.
To counteract this, the annotation count matrix was smoothed using
the confusion matrix of the training data. In this situation, the PLSA
model has a perplexity of 3.9, favoring approximately 4 equally
probable events. In comparison with a baseline system that uses
uniform distribution for event priors, the average increase in perfor-
mance is from 30% to 35% detection accuracy.

Table 5: Context-wise event detection accuracy

Context PLSAnoisy train PLSAnoisy train
with history with GT history

Basketball 48.4 55.0
Beach 32.4 31.9
Bus 32.6 33.5
Car 33.3 31.9
Hallway 37.1 38.5
Office 57.5 55.6
Restaurant 21.3 25.0
Shop 26.8 26.9
Street 20.0 22.0
Track&Field 38.2 42.6
Overall 34.9 36.3
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