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ABSTRACT

This paper develops a methodology to optimize sigmoid
function parameters based on a weighted sum of two objec-
tive measures, which are the perceptual evaluation of speech
quality (PESQ) measure and the log-likelihood ratio (LLR)
measure. The sigmoid function has been investigated for
speech enhancement as an alternative gain function to the
conventional MMSE function and the spectral subtraction
function. The benefit of using this function is that it has
tunable parameters for both its slope and its mean. It also
provides a potential to preserve more speech signal at high
SNR level. The SNR estimate and the gain function impact
the value of the objective measures such as PESQ and LLR,
and provide varying subjective quality. Thus, by studying the
relationship between the SNR estimate and the gain func-
tion, the performance of a single channel speech enhance-
ment scheme can be optimized. Here, we aim to optimize the
parameters of sigmoid function for different types of noise
conditions and SNRs. Subjective listening tests demonstrate
a significant improvement in the objective measures with
proper choice of parameters.

1. INTRODUCTION

Many solutions have been proposed over the years to enhance
speech signals under the influence of noise, particularly the
spectral subtractive (SS) based algorithms [2, 3, 7] and the
Log-MMSE methods [6]. It is well known that these so-
lutions have a “classic trade-off” between SNR and speech
distortion [12]. Moreover, SS based algorithms are prone
to generating speech artifacts commonly known as “musical
tones”, a phenomenon due to errors in noise statistics esti-
mation [12]. The challenge in noise estimation is to control
the update so it is not affected by the speech. Consequently,
when speech is coming into the noise estimate, it will be bi-
ased. One of the solutions for noise estimation is by em-
ploying voice activity detection (VAD) based algorithms [5].
However, VAD often miss-detect speech onsets at low SNR
and cause the noise estimate to be affected by the speech en-
ergy [4]. There are a multitude of methods suggested for
the control of noise update [4, 8, 13]. All of them can be
employed in this work but we assume an ideal estimation in
order to highlight the work in this study.

The use of the sigmoid (SIG) function for speech en-
hancement has been proposed in [10]. The study showed
that SIG function has benefits for hearing impaired people. A
more comprehensive description of the use of the SIG func-
tion for speech enhancement is found in [1]. Even though
both [1, 10] use the apriori SNR estimation in the gain func-
tion, they did not provide a clear picture on how the mean
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and the slope should be estimated. Sigmoid functions nat-
urally maps the SNR estimate into a gain function between
zero and one. Thus, in this paper, we propose to investi-
gate the optimization of the parameters in SIG function in
order to have a full use of the gain function and its applica-
bility over a wide range of scenarios. More specifically, SIG
function is optimized based on the perceptual evaluation of
speech quality (PESQ) measure and the log-likelihood ratio
(LLR) measure. Both of these measures correlates well with
subjective listening evaluations when compared to other ob-
jective measures [9]. This has also been verified in subjective
evaluations.

A main task for practical usage of speech enhancement
techniques is how they map an SNR measure into the gain
function which is applied on the input data. The posteriori
SNR and the apriori SNR are the common SNR measures
used for this task. The apriori SNR is more complex to use
since it involves the access to the original speech signal or
the need to provide an estimate of the original speech sig-
nal. Thus, instead of using the apriori SNR as in [1, 10], we
propose to use the posteriori SNR estimate. This estimate
provides an efficient way to optimize the mean and the slope
of the SIG function as well as the noise floor.

The contributions in this paper include the direct use of
the posteriori SNR in the SIG function and the establishment
of the relationship between the SNR estimate and the gain
functions. This study has direct impact for other speech en-
hancement techniques and gives a framework for finding new
and improved enhancement functions.

2. SINGLE CHANNEL SPEECH ENHANCEMENT

Consider a noisy signal in discrete time domain to be ex-

pressed as
x(n) =s(n) +v(n) (1)

where s(n) is the clean speech signal and v(n) is the additive
noise. Both speech and noise are assumed to be uncorrelated.
By using either a Short Time Fourier Transform (STFT) or
a filter bank, the observed signal can be transformed to the
frequency domain and can be represented as

X (k,m) = S(k,m)+V (k,m) 2)
where k = 1,2,...,K denotes the frequency bin index, m =
1,2,...,M denotes the time frame index, K is the number of
bands and M is the total number of frames. Here, X (k,m),
S(k,m) and V(k,m) denote the short-time spectral compo-
nents of x(n), s(n) and v(n), respectively.

The profound task for a single channel speech enhance-
ment scheme is to estimate the original speech signal from



the noisy speech signal. It involves estimating the speech sig-
nal spectrum by applying an adaptive gain function to every
frequency bin and time index of the noisy signal spectrum
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where S(k,m) is the estimated speech signal spectrum and
H(k,m) is the suppression function. Although many noise
suppression gain functions H (k,m) have been proposed in
literature, they commonly can be expressed as the function
of an SNR estimate, such as the apriori SNR & (k,m) and the
posteriori SNR y(k,m) given by

S(k,m) = H(k,m)X (k,m)
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where E {|S(k,m)|*}, E {|X (k,m)|*} and E {|V (k,m)|*} are
the power spectrum of the clean speech, the noisy speech and
the noise, respectively. The noise power spectrum can be
estimated during speech pauses. The enhanced speech signal
is obtained as

s(n) =ISTFT{|S(k,m)|.exp(j¢ (X (k,m)))}  (6)
where |. | denotes the magnitude of the estimated speech sig-
nal spectrum. The original noisy phase remains the same.

3. SNR ESTIMATION AND GAIN FUNCTION

In a short-time time-frequency interval, the background noise
statistics can be assumed to be stationary whilst the speech
statistics are non-stationary. By relating the posteriori SNR
in Eq. (5) to this assumption, both the background noise
spectra and the noisy speech spectra can be estimated by
a long term-averaging and a short-term averaging, respec-
tively. This can be done by using the first-order recursive
smoothing filter with different time-related smoothing con-
stants. In this work, the amplitude spectrum has been used
since the power spectrum estimate tends to increase the mu-
sical noise in the enhanced speech. In this case, the posterior
SNR can be estimated as

 Xx(k,m)

Yk m) Tokm)

)

where both the speech estimate Ax (k,m) and the noise esti-
mate Ay (k,m) can be obtained as

Ax (k,m) = o Ax (k,m— 1) + (1 — o) [X (k,m)|  (8)

Xy (k,m) = oy Xy (k,m — 1)+ (1 — o) [V (k,m)| (9

and ay and o are the smoothing constants for noise and
speech, respectively. These constants are obtained from

—2.2R
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where R is the frame rate, f; is the sampling rate and ¢, and
t, denotes the time averaging constant for both speech and
noise, respectively. A longer averaging time in these esti-
mates leads to a lower variance in the estimates. The distri-
bution of the SNR estimate is determined by the short-term

estimate, which is the speech estimate Ay (k,m). In order to
get a low variability of the SNR estimate, it is necessary for

Ax (k,m) to have relatively low variations. However, this is
contradictive to maintaining fast variations from the speech
signal since too much averaging in SNR estimate will pro-
duce muffled speech and give echo.

The SNR estimate can be mapped by the speech estima-
tion gain function such that noise components will be attenu-
ated and speech components will be maintained. In this case,
the parameters of the gain function can be tuned. It is also
natural for a gain function to operate between zero and one.

In this paper, two gain functions have been studied. We
consider the well-known SS function, H, (k,m), given by

1

where B and p are the oversubtraction factor and the power
factor, respectively. The factor  is used to control the
amount of speech spectral distortion, while the power fac-
tor p < 1 can be used to achieve high noise suppression un-
der low SNR [11]. In addition to that, a lower p value can
also allow more variations in the noise estimate. However,
for p < 1, the gain function at high SNR region will also
be attenuated and will not approach unity gain. Thus, the
noise floor € is introduced to control the amount of perceived
residual noise and to avoid annoying musical noise [2]. The
amount of musical noise is depending on the slope of the
gain function and how often the SNR values during noise
only periods come above the noise floor. A lower € threshold
can be chosen for a larger 3 value, which gives higher noise
suppression with little musical noise, but at the same time
suppresses low energy speech parts.

In order to provide a higher flexibility for speech en-
hancement and to control the shape of the gain function, the
SIG gain function is investigated

va(k,m) = max (8, 1- ﬁ (12)

1
H”',k, = £, = 13
o) =m (e o) O
or
1 —tanh <7a(?(k’£">_c))
Hig(k,m) =max | €,1— 3 (14)

where a and c are the slope and the mean respectively. This
function allows control of the SIG function’s mean and slope.
As such it provides a mean to suppress the noise as well as
to maintain the unity gain at high SNR region.

The parameters of a gain function are optimized in terms
of the level of noise suppression and the amount of musical
noise generated. As such, the gain function has high sensi-
tivity to changes in the SNR estimates when speech is active
but have a constant value for noise only periods. Accord-
ing to Figure 1, which plots the PDF of SNR estimate for
white noise at 938 Hz mapped with several gain functions,
the SNR estimate at noise only periods is distributed approx-
imately between 0.5 and 1.5. This means that attenuation



Il SNR estimate

PDF of SNR estimate

0 05 1 1.5 2 25 3 35 4 45 5
Amplitude of SNR estimate

Figure 1: PDF of SNR estimate for white noise at 938 Hz
mapped with (i) a spectral subtraction function with power
spectrum estimates (SS1), (ii) a spectral subtraction function
with amplitude spectrum estimates (SS2), and (iii) a sigmoid
function (SIG)

shall only be performed when the SNR estimate falls within
that region. For SIG function in Eq. (13) or (14), by mapping
the gain function to the SNR estimate, the parameters a and
¢ can be optimized for varying noise types and SNRs. The
mean value ¢ can be optimized based on objective evaluation
and the SNR estimate, while the slope a is more of a chal-
lenge since a larger a indicates more speech distortion while
a smaller a indicates lower noise reduction. Furthermore, the
optimization problem is exacerbated by the type of noise that
corrupts the noisy speech. Thus, it is important to understand
how general a selection of parameters is.

4. OPTIMIZATION

The single channel speech enhancement is a system which
contains a set of parameters that cannot be estimated ad hoc.
This paper aims to optimize the parameters in the gain func-
tion based on a proposed multi-objective optimization algo-
rithm, which can be formulated as

max wPESQ— (1 —w)LLR (15)

where w denotes the trade off between the two objective mea-
sures, 0 < w < 1. Here, we choose w = 0.5. PESQ and
LLR measures were used as the criteria of the optimization
problem. PESQ measure has been proposed in ITU-T Rec-
ommendation P.862 and has recently been suggested to be
more reliable than other traditional objective measures for
speech quality [9]. It was implemented based on the steps
in [12], which consists of pre-processing and filtering, time
alignment, auditory transformation, computation of the dif-
ference between loudness spectra and time averaging of both
reference and test signals. A higher PESQ score yields a
better perceived speech quality [12]. Whilst LLR measure,
which was reported in [9] as a reliable objective measure for
speech distortion, is one of the speech quality objective mea-
sures that evaluate the dissimilarity of the all-pole models
between the clean and the processed speech signals [12],

L) = ills (16)

drir (l.?, Ly —
VIRIT

where [, and Z; are the linear predictive coding (LPC) coef-
ficients of the clean speech signal and the processed speech
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signal respectively, and R; is the autocorrelation matrix of
the clean speech signal. A lower LLR score indicates a bet-
ter speech quality.

We begin with the evaluation of (i) SS function with
power spectrum estimates (SS1); (ii) SS function with am-
plitude spectrum estimates (SS2) and (iii) SIG function. By
mapping the gain functions to the PDF of SNR estimate as
shown in Figure 1, parameters f3, a and ¢ were chosen such
that the gain functions would stay constant during noise only
periods to advoid musical noise. Since the SNR estimate is
distributed mainly between 0.5 and 1.5 during noise only pe-
riods, the gain functions should be constant up to SNR= 1.5
in order to minimize the amount of musical noise. With this
in mind, the parameters for SS1 and SS2 are optimized based
on the mapping of the gain functions to the fitted distribution
in Figure 1, the objective measures (PESQ and LLR) and
the informal listening tests. Hence, the optimal parameters
are B = 1.9 for SS1 with p =2, and B = 1.3 for SS2 with
p = 1. This is consistent with the findings in [12] that the
oversubtraction factor should range from 1.3 to 2.0 for low
SNR conditions. The noise floor for the gain functions was
set as a constant value € = —20 dB.

For SIG function, from an exhaustive study based on the
similar procedure used for SS function, we have obtained
the optimized mean value as ¢ = 1.7 from the distribution
of SNR estimate. The slope can be set to a = 7 to achieve the
same amount of noise suppression when compared to SS1
and SS2 as shown in Figure 1. However, in order to find
the optimal performance of SIG function in different noise
conditions and SNRs, we optimize a based on the objective
function defined in Eq. (15).

5. EXPERIMENTAL RESULTS

The evaluation of the speech enhancement gain functions
was done by using a database of noisy speech corpus named
NOIZEUS [12]. The database contains 30 IEEE sentences
produced by 3 male and 3 female speakers and corrupted by
8 different types of noise at global SNR levels of 0 dB, 5 dB,
10 dB and 15 dB. In this work, white noise, pink noise and
factory noise were used for evaluation.

The recursive averaging constant were chosen as oy =
0.9912 with 1 second averaging time and oy = 0.8636 with
a 60 millisecond averaging time. The frame size were chosen
to be K = 256 with frame rate R = 64 corresponding to 75%
overlap. A sampling frequency of fs = 8000 Hz and a 256
points Hamming Window were applied.

By using the cost function as defined in Eq. (15), the op-
timal points for SIG function (SIGopt) at different noise con-
ditions and SNRs were searched. Tables 1, 2, and 3 show the
mean value for 30 NOIZEUS sentences corrupted by white,
pink and factory noise, respectively. In these three tables,
SIGopt at different SNRs and noise conditions are compared
to the corresponding results obtained from the the noisy sig-
nal, SS1 and SS2. The optimum points for SIG function with
the corresponding slope value a, which were obtained from
the optimization cost function, can be identified from Figure
2. As observed, with the flexibility of the parameters a and
¢, the optimal values of SIGopt are much higher than the re-
sults of both the SS functions. However, for pink noise at
SNR = 0 dB, the performance of SIG is slightly lower than
SS1 and SS2. Despite that, the tables show that there are
still a significant improvement between SIGopt at 0 dB SNR



Table 1: Optimal value of objective function, white noise

SNR | Noisy SS1 SS2 | SIGopt
0 -0.0378 | 0.1575 | 0.1303 | 0.2726
5 0.1235 | 0.2569 | 0.2352 | 0.4082
10 | 0.3346 | 0.3930 | 0.3925 | 0.5670
15 0.5739 | 0.5307 | 0.5577 | 0.7264

Table 2: Optimal value of objective function, pink noise

SNR | Noisy SS1 SS2 | SIGopt
0 0.0855 | 0.4423 | 0.4005 | 0.2910
5 0.3123 | 0.5502 | 0.7288 | 0.7736
10 | 0.5579 | 0.6359 | 0.7903 | 0.9265
15 | 0.8035 | 0.7399 | 0.8814 | 1.0580

Table 3: Optimal value of objective function, factory noise

SNR | Noisy SS1 SS2 | SIGopt
0 0.4446 | 0.5559 | 0.6405 | 0.7713
5 0.6846 | 0.6764 | 0.7444 | 09111
10 | 0.9192 | 0.7960 | 0.8592 | 1.056
15 1.1379 | 0.9396 | 1.0018 | 1.217

pink noise and the noisy signal. The possible solution to in-
crease the objective scores for SIG function at 0 dB SNR
pink noise is to increase its mean value, c. Besides that, we
can also observe that the optimal a becomes smaller with the
increasing of SNR. This is because the cost function finds
the optimal points of the gain function that minimize speech
distortion. Although a larger a leads to a higher noise reduc-
tion, it will increase the amount of speech distortion in the
enhanced speech signals. This indicates that the gain func-
tion can be less aggressive at higher SNR for lower speech
distortion.

Tables 4 - 6 show the results from LLR measure whilst
Tables 7, 8, and 9 show the PESQ scores. Similarly, for both
individual objective measures, the performance of SIGopt is
slightly better than the performance of SS1 and SS2 except
for 0 dB SNR pink noise that acts as an outliner in these re-
sults. From the tables, it can be observed that both measures
show similar behaviour in defining the quality of a speech
signal in terms of speech distortion.

In order to validate the performance of objective mea-
sures, informal subjective subjective listening tests have been
performed in factory noise at both 0 dB and 10 dB SNRs.
The listening tests have been conducted with ten listeners.
According to the amount of perceived noise and speech dis-
tortion, each listener was required to rate each signal from
a scale between one and five: 5 = Excellent, 4 = Good, 3 =
Fair and 1 = Bad. All listener results were averaged to repre-
sent the mean opinion score (MOS) as described in [12]. The
test were conducted with closed-headphone. For each listen-
ers, the applied procedures are: (1) clean speech and noisy
speech were played and repeated upon request; (2) test sig-
nals were randomly played. The used paramters are: b = 1.9
for SS1, b = 1.3 for SS2, a =1.1,c = 1.7 for SIG at 0 dB
factory noise, and a = 1.7,¢ = 1.7 for SIG at 10 dB factory
noise.

Table 10 shows the subjective MOS results of the noisy
speech signal and the enhanced signals. As shown in the
table, for factory noise at both 0 dB and 10 dB, a human
listener prefers the SIGopt approach when compared to SS1
and SS2 methods. These results match the performance of
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Figure 2: Cost function for optimization for different slope
a with mean ¢ = 1.7 at different SNRs: (a) white noise; (b)
pink noise; and (c) factory noise

LLR and PESQ measures in Tables 6 and 9, respectively.

6. CONCLUSION AND FUTURE WORK

This paper presents a methodology to optimize the mean and
the slope of the sigmoid function based on a proposed ob-
jective function. It was shown that the SNR estimate and
the gain function impact the objective measures and pro-
vide varying subjective quality. The gain function parame-
ters were designed such that during the noise only periods it
provides a constant suppression thus avoiding annoying non-
linear artefacts (musical noise). This was done by mapping
the function to the distribution of the SNR estimate. Op-
timization of the sigmoid function was done based on two
widely used objective measures: PESQ and LLR. Experi-
mental result shows that with proper choice of parameters,
the sigmoid function can be optimized, which can enhance
the quality of the noisy speech while maintaining more en-
ergy of the speech components when compared to the spec-
tral subtraction function.
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Table 4: LLR, white noise

SNR | Noisy SS1 SS2 SIGopt
0 1.5978 | 1.4843 | 1.4949 | 1.4340
5 1.4978 | 1.4383 | 1.4352 | 1.3480
10 1.3708 | 1.3609 | 1.3471 | 1.2570
15 1.2245 | 1.2601 | 1.2386 | 1.1530
Table 5: LLR, pink noise
SNR | Noisy SS1 SS2 | SIGopt
0 1.4225 | 1.3221 | 1.2659 | 1.3100
5 1.2867 | 1.2429 | 1.1057 | 1.0750
10 1.1383 | 1.1794 | 1.0915 | 0.9941
15 0.9920 | 1.1021 | 1.0441 | 0.9189
Table 6: LLR, factory noise
SNR | Noisy SS1 SS2 SIGopt
0 1.1480 | 1.2071 | 1.1066 | 1.0220
5 1.0047 | 1.0873 | 1.0339 | 0.9331
10 0.8680 | 0.9897 | 0.9498 | 0.8395
15 0.7519 | 0.9002 | 0.8682 | 0.7448

Future work will extend the optimization work based on
the level of speech distortion and noise suppression in test
signals. Evaluation can be done by using a combination of
more objective measures as the cost function of the optimiza-
tion problem. Measurement and reduction of musical noise
will be included. More formal subjective listening tests will
be conducted and compared with the results from objective
measures. Investigation for more noise scenarios such as
babble noise and music will be performed.
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