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ABSTRACT
Digital signal processing applications are specified with
floating-point data types but they are usually implemented in
embedded systems with fixed-point arithmetic to minimize
cost and power consumption. The floating-to-fixed point
conversion requires an optimization algorithm to determine a
combination of optimum word-length for each operator. This
paper proposes new algorithms based on Greedy Random-
ized Adaptive Search Procedure (GRASP): accuracy-based
GRASP and accuracy/cost-based GRASP. Those algorithms
are iterative stochastic local searches and result in the best re-
sult through many test cases, including IIR, NLMS and FFT
filters.

1. INTRODUCTION

Most embedded systems integrate digital signal processing
applications. These applications are usually designed with
high-level description tools to evaluate the application per-
formances with floating-point simulations. Nevertheless, if
digital signal processing algorithms are specified and de-
signed with floating-point data types, they are finally im-
plemented into fixed-point architectures to satisfy the cost
and power consumption constraints associated with embed-
ded systems. Therefore, the application specification must
be converted into fixed-point. The aim of the conversion pro-
cess is to determine, for each data, the number of bits allo-
cated to the integer and fractional parts. This process consists
of two main steps corresponding to the determination of the
position of the binary point and the optimization of the data
word-length. In the first step, the data dynamic is determined
analytically by interval arithmetic or affine arithmetic, or by
simulation-based methods. This step ensures that there is no
overflow.

In the second step, the fractional word-length is deter-
mined. An optimization procedure searches for a combina-
tion of optimum word-length for each operator. The opti-
mization process is performed under constraint, which en-
sures that the numerical accuracy is sufficient to maintain the
application performance. The optimization problem is com-
binatorial and can be defined as follow:

minC (b) subject to λ (b)≥ λmin (1)

where bbb is the vector representing the combination word-
length of each operator, C is the cost function that has to be
minimized, λ is the numerical accuracy and λmin is the mini-
mal accuracy that can accepted. Generally, C corresponds
to power, energy consumption, area or delay; λ in many
applications is the signal-to-quantization noise ratio. There
is no relation in literature between the nature of C and the

optimization algorithm choice. In architecture having fine-
grained word-length granularity, most of the word-length in
a given range is supported. This granularity is obtained when
the architecture can be configured or designed at the bit level
like in ASIC or in FPGA when logic elements are used.

When the word-length vector size |bbb| is large, the opti-
mization time increases significantly. There are many signal
grouping techniques to reduce this size, but they also reduces
the flexibility in word-length choices. In this work, medium
and large-size optimization problems are considered. Deter-
ministic approaches based on greedy algorithms [1, 2, 3, 4]
allow obtaining a solution quickly, but the quality of this
solution decreases when the number of variables increases.
Stochastic approaches like genetic algorithm [5] improve the
quality of the solution but require a high optimization time.

In this paper, two new algorithms for the word-length op-
timization procedure, based on GRASP, are proposed. Com-
pared to existing methods, our proposition yields better re-
sults and has a complexity between deterministic methods
and stochastic methods. The paper is organized as follows.
Some notions in application of combinatorial optimization in
word-length determination are given in Section 2. Previous
works in word-length optimization algorithms are presented
in Section 3. Our algorithms are detailed in Section 4. Simu-
lation results are discussed in Section 5 and we conclude our
work in Section 6.

2. DEFINITIONS

In this section, some definitions to facilitate the presentation
in the paper are given. The minimum word-length of an oper-
ator is its smallest word-length so that the accuracy criterion
(1) is satisfied if other operators are at their largest supported
word-length. The minimum word-length set (MWS) is a vec-
tor bbbmin = (bmin

1 ,bmin
2 , ...,bmin

N ) where each bmin
k is the mini-

mum word-length of kth operator.
The minimum uniform word-length, noted as buni, is

the smallest value satisfying λ (bbbuni) ≥ λmin with bbbuni =
(buni,buni, ...,buni).

3. RELATED WORK

The word-length optimization problem is NP-complete so
there is no practical method able to find an optimal solution.
Instead, algorithms attempt to build an acceptable solution
with different heuristics. It is not an easy task to classify or
to compare different algorithms. In this paper, algorithms are
divided by their nature: deterministic or non-deterministic.
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3.1 Deterministic algorithms
K.I. Kum and W. Sung use an exhaustive search and a heuris-
tic procedure in [1]. The exhaustive search starts from the
MWS, evaluates all word-length combinations having a dis-
tance of one bit. If no solution is found, the distance is in-
creased until a solution is found. It is not a complete search
because there is no guarantee that a solution at distance d is
always better, in term of cost, than every solution at distance
d +1. Then once a solution at distance d is found, the algo-
rithm ignores all other solutions at distance d +1 and above,
and may miss the best solution. The heuristic strategy is by
some mean a minor modification of the exhaustive search.
Instead of increasing the distance, in each step it increases
the word-length of every operator by one bit to quickly find
a solution. Then, in the refinement process, it tries to reduce
the word-length of each operator while still keeping the ac-
curacy criterion satisfied. In both algorithms, the solution is
not always optimal, even not sub-optimal.

A sequence search, or min+1 bit, is presented in [2]. It
is a greedy algorithm, where an operator is chosen in each
step to increase its word-length by 1 bit. The criterion used
in those choices is the accuracy: each operator is temporarily
increased by 1 bit, the one that results in the best accuracy
is selected. There are other choices, for example the discrete
gradient.

Constantinides et al. propose a max–1 bit greedy algo-
rithm in [3]. The authors consider that the cost function and
the accuracy function are not increasing with the word-length
set, but suppose that they are increasing with the uniform
word-length (mono-variable). The starting point for greedy
descent is kbbbuni, where k > 1 is a scaling factor. The criterion
used to choose the best operator in each word-length descent
step is the cost reduction.

Another greedy algorithm is presented in [4]. Instead of
using the complexity (cost) or distortion (accuracy), the au-
thors use a complexity–distortion measure, which is a lin-
ear combination of them. While it is not trivial to find the
good weighting coefficient αk, the usage of normalized val-
ues of complexity and distortion measure with a coefficient
αk equal to 0.5 leads to the best solution in an IIR design.

Branch and Bound algorithms are also used in word-
length optimization. As this is a complete search, it is only
practical for small problems. In [6], some improvements are
proposed. The authors suggest that the search space is only
between bbbmin and bbbuni. Also, if a node bbbt does not satisfy the
accuracy criterion, all nodes bbbk where bk

n ≤ bt
n ∀n = 1..N

are ignored. In [7] other improvements are presented. It
consists in operator reordering by accuracy sensitivity, pre-
eliminate bad branches and use limited number of word-
length values for each operator. Those values are around the
result found in a relaxed optimization problem where word-
lengths can be non-integer. However, there is no proof that
the optimum in Z+ is near an optimal solution in R+.

Mixed Integer Linear Programming (MILP) is used in [8]
to achieve the global optimum. However, because of very
long optimization time in a moderate-size problem, this ap-
proach is usually used to assert other algorithms performance
in not very complex problems.

3.2 Stochastic algorithms
Simulated Annealing (SA) is an iterative optimization where
each iteration tries to improve the solution. It may step back

to a worse solution with a specific probability. In [9], the
word-length optimization problem is transformed to MILP
and solved by SA. In [10], an Adaptive Simulated Annealing
(ASA) is used to optimize a PID controller in R+ then the
word-lengths are approximated from that result.

[11] proposes an application of ASA with MWS as the
starting point. For a polynomial approximation, the solutions
are very close to the global optima. However, the authors
also remark that for more complex designs, the search space
is huge and the optimization time will be long.

In [12], a Genetic Algorithm (GA) is used to optimize
LMS filter coefficients and the results are compared to ran-
dom search. In [13], a hybrid GA associated with a gradient-
based greedy search is proposed. This new approach leads to
a faster convergence speed in comparison with the GA.

There are many attempts to use Multi-Objective GA
(MOGA) in word-length optimization. The weighted-sum
method is used to find solution for the FFT coefficients in an
MC-CDMA receiver [14]. In [15], the weighted-sum tech-
nique is again used to optimize the word-length in two differ-
ent applications, a FIR and a DCT. However, in those works,
there is no comparison with deterministic algorithms. In [5],
multi-objective GA is compared to greedy-like algorithms
and known to have better performance in small problems:
4-variable IIR and 7-variable IIR.

4. PROPOSED ALGORITHMS

In this section, firstly a better greedy algorithm, known as
Tabu Search or steepest-descent–mildest-ascent is proposed
for word-length optimization. Then, this algorithm serves
the local search step in GRASP. As we will see later, the
criterion for local search could be the accuracy or the ac-
curacy/cost ratio. Therefore, we propose two correspond-
ing GRASP algorithms: accuracy-based GRASP (GRASP-a)
and accuracy/cost-based GRASP (GRASP-ac).

4.1 Tabu Search
Currently all greedy algorithms used in word-length opti-
mization are mono-directional: it is either steepest-descent
(max–1) or mildest-ascent (min+1). The proposed algorithm,
based on Tabu Search [16], allows movements in both direc-
tions. The set T containing tabu operators is used to avoid
useless or infinite loops.

The procedure is presented in Algorithm 1. In the first
part, at lines 5–15, the gradient associated to each operator is
calculated. If an operator reaches its word-length limit, it is
added into the tabu list. Next, at lines 19–30, depending on
the direction, the operator with either the largest or the small-
est gradient is selected in this step. If this selection makes the
current accuracy go below minimum allowable value, the di-
rection is reversed.

It can be proven that the performance of this algorithm is
at least as the same as greedy search.

Criterion for direction search
At each step of the algorithm, the word-length of one opera-
tor is modified to move towards the final solution. A criterion
has to be defined to select the best direction i.e. the operator
for which the word-length has to be modified. The criterion
is based on the computation of the discrete gradient of the
cost and the accuracy. Two criteria for selecting the best di-
rection have been considered. The first criterion computes
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Algorithm 1 Tabu search in word-length optimization

Require: solution bbb
Ensure: better solution than bbb

1: T ← /0 tabu operators
2: bestCost← NaN; bestWL← /0
3: direction← λ (bbb)≥ λmin?−1 : 1 determine direction
4: while |T |< N do
5: for all 1≤ k 6∈ T ≤ N do calculate criterion
6: if cannot move bbbk then
7: T ← T ∪{k}
8: else
9: bbbnext,k← next position of bbb at operator k

10: ∇k← fdir

(
bbbnext,k,bbb

)
11: if λ (bbbnext,k)≥ λmin then
12: update bestCost, bestWL if necessary
13: end if
14: end if
15: end for
16: if |T |= N then
17: stop
18: end if
19: if direction > 0 then
20: j← argmax∇k; b j← b j +1
21: if λ (bbb)≥ λmin then
22: direction←−1; T ← T ∪{ j}
23: end if
24: else
25: j← argmin∇k
26: b j← b j−1
27: if λ (bbb)< λmin then
28: direction← 1
29: end if
30: end if
31: end while
32: return bestWL

the gradient on the accuracy and corresponds to the one used
in the well-known min+1 bit

∇k/λ = fdir

(
bbbnext,k,bbb

)
=

λ (bbbnext,k)−λ (bbb)

d(bbbnext,k,bbb)
(2)

with bbb = (b1, ...,bk, ...bN), bbbnext,k = (b1, ...,next(bk), ...bN)
and d is a distance metric. The term next(bk) represents the
next value of bk and is equal to bk + 1 if the difference be-
tween two available word-lengths is of 1 bit and the direction
is positive. Within the same condition, the distance between
two vectors d(bbbnext,k,bbb) = 1.

Amongst deterministic algorithms, min+1 bit does not
always give a good result. It takes sometimes the wrong di-
rection and returns very bad results. To improve this criteria,
the cost and the accuracy are taken into account as follows

∇k/λC =
∇k/λ

∇k/C
=

λ (bbbnext,k)−λ (bbb)

C (bbbnext,k)−C (bbb)
(3)

This criterion selects the direction which minimizes the
cost increase and maximizes the accuracy increase.

4.2 Greedy Randomized Adaptive Search Procedure
(GRASP)
Deterministic greedy algorithms, although simple, can not
improve existing solution even if they have more time. In the
latter case, there are many works on stochastic local search.
We propose here a GRASP-based algorithm for word-length
optimization. This algorithm, as illustrated in Algorithm 2, is
a multi-start process consisting of two phases: construction
phase and local search phase. In the construction phase, a
randomized search algorithm is used to find a sub-optimal
solution bbbg and then from this solution bbbg a local search is
applied to refine the solution. The randomize aspects allow
avoiding local minima. For the local search phase, the tabu
search algorithm presented in Section 4.1 is used.

Algorithm 2 Pseudo-code for GRASP procedure

1: bbb← bbbmin

2: while maximum number of iterations not reached do
3: bbbg← greedy randomized solution
4: Local search from bbbg

5: bbb← which is better(bbb,bbbg) update the best solution
6: end while

Construction phase
The construction phase is presented in Algorithm 3. In this
phase, a greedy randomized search is used to get a random
sub-optimal solution. From line 3–5, the quality of each can-
didate is calculated. A parameter TRCL that is the size of the
Restricted Candidate List (RCL) is defined. The RCL con-
tains the top TRCL candidates at each step. A candidate from
this list is selected with a uniform probability 1/TRCL and is
used for the next iteration. The parameter TRCL determines
thus the variant of solutions in construction phase. The usual
greedy algorithm is a special case where TRCL = 1.

Algorithm 3 GRASP: Solution construction phase

1: bbb← bbbmin

2: while λ (bbb)< λmin do
3: for k = 1 to N do
4: ∇k← fdir

(
bbbnext,k,bbb

)
5: end for
6: RCL← top TRCL candidates with best qk
7: i← random value in RCL
8: bbb← next(bbb, i)
9: end while

5. SIMULATIONS AND RESULTS

In this section, we show that both GRASP-a and GRASP-ac
have better results than deterministic algorithms and genetic
algorithms. Energy consumption is used as the cost function.

5.1 Accuracy-based GRASP (GRASP-a)
In order to assert the performance of our algorithm, we com-
pare it with other well-known algorithms. Amongst deter-
ministic algorithms, a min+1 bit greedy search and CDM[4]
are selected. CDM is a greedy algorithm using a linear com-
bination of normalized quality and cost function, that usually
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has better results than the basic min+1. Amongst stochastic
algorithms, a MOGA [5] is used in this comparison.

Our test cases include 32-, 64- and 128-point Fast Fourier
Transforms (FFT), a 128-point Normalized Least Mean
Square (NLMS) filter and a cascaded canonic biquad Infi-
nite Impulse Response (IIR) filter. Each application can have
different operator assignations, therefore many test cases and
many problem sizes can be experimented.

The purpose of our test bench is to compare different
algorithm performance. The reduction of the problem size
by signal grouping or the optimization/high-level synthesis
coupling[17, 18] is not in the scope of this paper. Medium-
size problems are considered, because small problems do not
well differentiate algorithm performance. Large problems re-
sult in very bad deterministic algorithm performance, also
require much more simulation time in MOGA to have an ad-
equate solution. In all of our tests, MOGA have a population
size of 90 and stop after 500 generations, where there are
still dominated individuals. This size is good for small and
average size problems, but not good enough for larger ones.
However, with this size, MOGA already has the longest op-
timization time. In GRASP-a, the parameter TRCL is fixed to
3, and the algorithm stops after 10 iterations.

The optimization problem is presented in (1), where we
search for an optimal cost minC (b) subject to an accuracy
not less than λmin. The optimization results are presented in
Table 1 for a 64-point FFT with 12 variables, in Table 2 for
the NLMS filter with 25 variables, and in Figure 1 for the IIR
filters with 14, 18 and 36 variables. nC and nλ are the number
of function evaluations. All results are energy expressed in
Joule. To obtain those results, each deterministic algorithm
runs once and each stochastic algorithm runs 20 times to get
the average result. It is noteworthy that while deterministic
algorithms do not have stable performance, stochastic algo-
rithms like MOGA and GRASP always return acceptable so-
lution. Our proposed algorithm always performs better than
the others.

GRASP-a performs significantly better than MOGA in
term of result quality and optimization time for small and
average size problems.

Table 1: Performance comparison: FFT-64 (12 variables)

Algorithm Time (s) nC nλ Result (J)

Greedy [2] 67 1 1731 33.19×10−8

CDM [4] 126 1623 1867 22.15×10−8

MOGA [5] 2715 40213 41412 6.030×10−8

GRASP-a 278 165 7985 5.213×10−8

Table 2: Performance comparison: NLMS-128 (25 vari-
ables)

Algorithm Time (s) nC nλ Result (J)

Greedy 47 1 426 2.150×10−8

CDM 55 277 439 2.150×10−8

MOGA 6001 42084 42234 2.513×10−8

GRASP-a 414 395 3630 2.127×10−8
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Figure 1: Solution quality and optimization time for different
IIR structures: 14 variables, 18 variables and 36 variables.

5.2 Accuracy/Cost-based GRASP

In this section, the performance of GRASP-ac is measured
against the gradient descent search in FFT applications, with
a 64-point FFT (12 variables) and a 128-point FFT (28 vari-
ables). In each FFT, we test the algorithms in 11 values of
minimal accepted accuracy. To demonstrate the performance
of GRASP-ac against the gradient search, only 5 iterations
are used instead of 10 in GRASP-a. The results are presented
in Figure 2. GRASP-ac performs at least as well as gradient
descent, and is up to 6% and 10% better with a reasonable
execution time.

5.3 Further remarks

Finally, the combination of GRASP-a and GRASP-ac is
compared against greedy search and gradient descent to show
how it improves deterministic algorithm performance. All al-
gorithms are tested in IIR, FFT and NLMS applications each
having different numbers of variables and different minimal
accepted accuracy. Overall, 189 optimization problems are
created and tested with different algorithms. The most im-
proved solutions with our GRASP are presented in Figure 3.
The solution quality is normalized: the best solution is equal
to 100%. Even gradient descent gives quite good solution,
though GRASP could improve the result by 10–20%.

The experiment have been carried out on a mono-core
processor. Given that GRASP is a multi-start process, it can
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Figure 2: Comparison between the gradient descent and
GRASP-ac on FFT applications. Figures represent the rel-
ative over-cost compared to the best solutions.
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Figure 3: Solution quality of optimization algorithms: the
combined GRASP-a/ac and the others. Results are normal-
ized: 100% is the best solution.

benefit easily from multi-core processor and the execution
time can be reduced significantly.

6. CONCLUSION

In this paper, a new stochastic local search algorithm is pro-
posed, in coupled with a tabu search. Our experiments in
different medium-size optimization problems show that this
algorithm has very good performance in comparison to other
deterministic and stochastic algorithms. One of the main dis-
advantages of deterministic algorithm is that the performance

can not be improved if more time is available. GRASP does
not have this problem. Moreover, compared to Genetic Algo-
rithms, the complexity of GRASP is moderate and is easily
adjustable. In the future, different selection criteria in the
greedy randomized search and intelligently-adjustable RCL
will be considered. Moreover, the appropriate number of iter-
ations will be experimented. The proposed algorithm would
also be tested with larger problems.
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