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ABSTRACT
The aim of the present paper is to demonstrate the impact

of low-pass filter non-idealities on compressed sensing signal
reconstruction in the random demodulator (RD) architecture.
The random demodulator is a compressed sensing (CS) ac-
quisition scheme capable of acquiring signals in continuous
time. One of the main advantages of the system is the possi-
bility to use off-the-shelf components to implement this sub-
Nyquist framework. Low-pass filtering plays an important
role in the RD analog acquisition process, which needs to be
modeled carefully in the digital part of the compressive sens-
ing reconstruction. Having a complete model of the analog
front-end, CS algorithms conduct almost perfect reconstruc-
tion taking far less samples than for traditional Nyquist-rate
sampling. This paper investigates reconstruction sensitivity
to distortion in the impulse response of the low-pass filter
caused by passive component value fluctuations. The authors
simulate common CS recovery algorithms and show that the
worst-case performance degradation due to filter component
tolerances can be substantial, which requires special atten-
tion when designing reconstruction algorithms for RD.

1. INTRODUCTION

For more than half a century, traditional signal acquisition
schemes have relied on Shannon-Nyquist sampling theory,
which dictates sampling at a rate that is higher than twice the
highest frequency of the sampled signal. In many cases, this
constraint makes analog-to-digital converters (ADCs) power
hungry devices. The recently emerged theory of CS [1, 2]
states that this lower bound on the sampling frequency can be
significantly reduced when the processed signal is sparse or
compressible within a certain basis. CS theory exploits a pri-
ori knowledge of the signal structure, where signal sparsity is
modeled by expressing the signal as the linear combination
of a few elements taken in a particular dictionary (orthogonal
or redundant) [3].

Compressed sensing is still mainly a mathematical con-
cept, and only few successful attempts to sample continuous-
time signals and hardware implementations have been re-
ported [4, 5, 6]. One of the sampling architectures that ex-
ploits the signal sparsity is called random demodulator, the
block diagram of which is shown on Fig 1. RD modulates
the signal by multiplying it with a high-rate pseudo-random
alternating sign sequence, “smearing” the signal frequency
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Figure 1: Random demodulator structure [4]

content across the entire spectrum. A low-pass filter assures
no aliasing is introduced by the following low-rate ADC cap-
turing compressed samples. The main advantage of this de-
sign is that it is easy to implement using robust, low-power
and commonly available off-the-shelf components.

Thanks to its design simplicity, the RD hardware CS sys-
tem is less exposed to the effects of non-ideal components
compared to other CS hardware realizations [7]. Considering
the fact that the random demodulator operates at relatively
lower sampling rates, component non-idealities such as clock
jitter of an ADC or mixer distortion can be neglected. One
important aspect of the RD system is the measurement ma-
trix defined within a reconstruction algorithm. It represents
the analog sampling process where the pseudo-random se-
quence and impulse response of the filter need to be modeled
precisely.

In reality, no physical device can be modeled perfectly.
Due to filter component tolerances, the impulse response of
the hardware low-pass filter will generally differ from the one
modeled in the reconstruction algorithm. In this paper, we
study the sensitivity of compressed sensing to this mismatch
between the ideal and the actual analog front-end represented
by the measurement matrix. For that purpose we demonstrate
a MATLAB simulation framework and discuss results of our
analysis.

2. METHODOLOGY

2.1 The Random Demodulator
When dealing with compressed sensing as it was initially de-
fined [1, 3], we can distinguish two main operations that can
be carried out separately. Namely, the data acquisition pro-
cess and the subsequent recovery of the signal of interest by
means of a reconstruction algorithm. In order to apply com-
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Figure 2: Process of compressed sensing acquisition.

pressed sensing to continuous signals, one needs an analog
sampling front-end that will provide a signal representation
that is compatible with the CS framework. The random de-
modulator is one of the analog acquisition schemes, which
has been successfully employed in the compressed sampling
field [4, 8, 7]. This data acquisition process provides non-
adaptive linear projections of the analog input signal that are
structured to directly conform to the CS approach:

y = ΦΨα, (1)
where: y ∈ RM×1 represents compressed measurements,
Φ ∈ RM×N , (M � N) describes system measurement ma-
trix, Ψ ∈CN×N is signal sparsifying basis and α ∈CN×1 is a
sparse vector containing coefficients, most of which are zero.
Fig. 2 represents the general model of the CS system with
RD framework included.

2.2 System design
The analog input signal model in our analysis is assumed to
be a multi-tone signal that is band-limited and sparse in the
frequency domain. Assuming finite energy in the signal it
can be modeled as:

x(t) =
N

∑
n=1

αnψn (t) , t ∈ [0,T ), (2)

where αn denotes Fourier series coefficients, T represents
processed interval and

ψn (t) = exp
[

j
2π

T
nT
]

The random demodulator acquisition scheme consists of
3 operations: A) demodulation; B) low-pass filtering; and C)
sampling. The operations performed by the analog front-end
have to be modeled in the measurement matrix Φ. Properly
defined Φ enables the reconstruction algorithm to success-
fully recover the sparse representation of the signal from the
compressed measurements. Demodulation is carried out by
multiplication by a randomly alternating zero-mean ±1 se-
quence, often called chipping sequence, which is produced
by a random number generator. The chipping sequence needs
to be generated at minimum Nyquist frequency of the input
signal. Continuous-time demodulation can be described by

pc(t) =
+∞

∑
n=−∞

Pc(n)exp
[

2π

T
t
]
, t ∈ [0,T ), (3)

where Pc(n) represents Fourier series coefficients of the chip-
ping sequence pc(t). The continuous-time multi-band signal
is then multiplied with the pc(t) sequence, which is carried
out by a mixer:

y(t) = x(t) · pc(t), t ∈ [0,T ). (4)

This corresponds to frequency smearing, which is equal to
convolution within the frequency domain [7]. The original
sparse signal contains few tones, so it is sufficient to exam-
ine a small portion of the spectrum in order to extrapolate
them. For that reason, we perform lowpass filtering to pre-
vent aliasing, and we sample with a low-rate ADC at rate
Ts. This operation produces compressed samples that are en-
coded with the representation of the original sparse signal
[7]. The discrete measurement vector y can be characterized
as a linear transformation of the discrete coefficient vector α .
In CS it is expressed by the transform matrix A = ΦΨ. The
compressed measurement vector y can be modeled as follows
[8]:

y [m] =
∫ +∞

−∞

x(τ) pc (τ)h(mt− τ)dτ |t=MT

=
N

∑
n=1

αn

∫ +∞

−∞

ψn (τ) pc (τ)h(mMT − τ)dτ (5)

In the compressed sensing framework, (5) is approximated
by the measurement (sensing) matrix Φ. The measurement
matrix, modeling the basic principle of the random demod-
ulator, contains N

M ·C pseudo-random ±1s per row, where
N defines the signal length, M is the number of measure-
ments, and C is a scaling constant depending on the impulse
response representation.

3. ANALOG FRONT-END AND MEASUREMENT
MATRIX

The measurement matrix represents a model of the opera-
tions undergone by the signal during acquisition. It enables
the recovery to find the sparsest solution to the system. In
addition to the chipping sequence, that needs to be reflected
in the Φ matrix, a precise model of the filter needs to be in-
cluded. Because the sampling system acquires samples in
the time domain, the filtering operation is modeled through
its impulse response h(t).

In order to visualize how the matrix Φ is constructed,
one might consider two matrix factors representing the chip-
ping sequence and impulse response of the filter, P and H,
respectively

Φ = HP. (6)

The demodulation process multiplies each sequence
value pc,n with the corresponding signal input xn within spec-
ified period

P = diag{pc,1, . . . , pc,N}.

The structure of the impulse response matrix is a little
bit more complicated. The size of the matrix depends on
how densely the filter impulse response is discretized. Each
row of the matrix corresponds to one processed sample. The
offset for each row corresponds to the decimation, which is
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directly proportional to the sub-sampling factor

H =



hn hn−1 . . . hn−τ . . . 0 0 0 0

0 0 hn
. . .

...
...

...

0 0
. . . . . . . . . 0 0 0

...
... . . . h3 h2 h1 0 0

0 0 . . . 0 hn . . . h3 h2 h1

 .

The above system of linear dependencies is an approxima-
tion of the infinite dimensional analog architecture. Given
the above model in (6) and the acquired data, which is de-
scribed by the CS model in (1), we can try to solve the under-
determined system of equations and reconstruct the sparse
vector α corresponding to the sampled input signal, linearly
transformed by the sparsifying matrix. In order to obtain the
sparsest solution, in principle we would have to solve the
combinatorial search implied by:

minα ||α||0
subject to y = ΦΨα

(7)

Solving (7) is an NP-hard problem. Fortunately, the prob-
lem can be relaxed to a convex problem, based on `1-norm
minimization, and the sparse vector can be recovered.

minα ||α||1
subject to y = ΦΨα

(8)

This particular approach is called Basis Pursuit [9] and it is
one of the convex optimization methods used to recover sig-
nals within the CS framework. Apart from convex optimiza-
tion approaches, there is a group of methods called Greedy
Pursuit where the sparse solution is computed one step at
a time by adding new signal components that yield least re-
covery approximation error. In our work, both types of meth-
ods have been employed to investigate recovery sensitivity to
measurement matrix deviations due to filter impulse response
variations. In the description of the performed simulations,
we specify the exact algorithms used.

3.1 Modeling non-ideal effects
Following the methodology of RD, briefly described in this
paper, we need a discrete model of the analog front-end in or-
der to perform compressed sensing. The system cannot dis-
card the information that is carried by the signal of interest.
Since the acquisition process takes place in the time domain,
we aim to design a discrete model of the analog sampler that
closely approximates the time-domain system.

As mentioned, we represent the low-pass filtering opera-
tion by a discretized model of the filter impulse response. It
is worth noting that our modeling approach entails a trade-off
between computational complexity in the signal reconstruc-
tion and density of the discretized filter impulse response.
We assume known filter architecture and parameters from
which the filter transfer function H(s) can be calculated,
which can be further represented in the discrete-time domain,
where one can obtain an approximation of the impulse re-
sponse.

In order to investigate CS reconstruction sensitivity to
changes in the filter response we have developed a rather
simple, but for the purpose appropriate, MATLAB frame-
work. We have employed a 4th-order Butterworth low-pass

L1 L2

C1 C2

Figure 3: 4th-order low-pass filter

filter, with inductive passive network architecture depicted in
Fig. 3.

Assuming that our input impedance is represented by
R (50 Ω) we can derive a transfer function1, H(s) for this
filter:

H(s) =
1

As4 +Bs3 +Cs2 +Ds+1
, (9)

where

A =C1C2L1L2 B =C1C2L2R
C = L1C2 +L2C2 +L1C1 D = RC2 +RC1

Using bilinear transform (a.k.a Tustin’s method), one can
transform the model to discrete-time (Z) domain, obtain im-
pulse response and create the H matrix representing the fil-
ter. In reality, the passive component values, due to the man-
ufacturing process, deviate from their ideal technical spec-
ification. In particular, each component is produced under
a process which cannot be controlled with sufficient preci-
sion. The process can be modeled with a Gaussian distribu-
tion where the mean µ is the target value. Quality assess-
ment of the components (inductors, capacitors, resistors) se-
lects them according to standard guidelines (e.g. IEC600632)
for choosing exact product dimensions within a given set of
constraints. Depending on the design budget and component
dimensions we end up with fabricated passive components
with values different by up to, for example 1% or 10% from
what we aimed for. Hence, the H matrix designed accord-
ing to ideal values will be an inaccurate representation of the
filter device. When possible, one might try to calibrate the
algorithm according to performed measurements on the par-
ticular device, since component values due to production tol-
erances are static. Fig. 4 illustrates 4th-order Butterworth fil-
ter impulse response deviations from the expected response.
Two worst-case scenarios are depicted, where all the capaci-
tors deviate by 5% and inductors by 10% from their expected
values.

Another problem with the elements in the hardware re-
alization is that nominal values of the components might
fluctuate dynamically due to external factors like e.g., am-
bient temperature variations. Dynamic component fluctua-
tions directly introduce change to the filter response, which
cannot be calibrated real time. We would like to point out
that the problem of filter non-idealities, as well as RD hard-
ware implementation issues is more complex and some of
the other possible problems have been discussed in [7, 10],
where some compensation schemes have been proposed. The
idea of calibrating the device has been pointed out by [7].

1Assuming high load impedance we have neglected it for the purpose of
simplicity

2IEC, Preferred number series for resistors and capacitors, Standard
IEC 60063, International Electrotechnical Commission, 1963.
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Figure 4: Impulse responses of the ideal component value
low-pass filter and two worst case component deviations.

This calibration could help to decrease the impact of passive
element fluctuations, but only in limited cases.

3.2 Simulation scheme
A MATLAB framework has been designed to simulate com-
ponent deviations and examine the reconstruction error per-
formance of different CS reconstruction algorithms. Algo-
rithm 1 briefly describes the simulation methodology.

In our experiments, we use a multi-tone signal with five
tones distributed within a 100Hz to 2.1kHz range, where
2.1kHz represents the maximal signal frequency. The in-
put x is represented by N = 9000 samples; oversampling
imitates the analog front-end behavior. Additionally, the
input signal is corrupted by additive white Gaussian noise
(AWGN) and its signal-to-noise ratio (SNR) is set to 50dB.
The low-pass filter was synthesized with a 500Hz cut-off fre-
quency ( fcut ), where the following values from (9) were cal-
culated: A = 2.053E−14, B = 8.428E−11, C = 3.459E−07
and D = 8.318E−4. Sub-sampling operates at rate 1kHz
(twice the fcut ). The analog front-end for each input vector x
outputs a 1000-samples compressed vector y, also known as
an observation vector (M = 1000). The trivial initial condi-
tions have been chosen to assure almost perfect signal recon-
struction, with high probability [7]. Additionally the low fre-
quencies that were chosen for the input signal were dictated
by computational limitations of our simulation framework.

The RD measurement matrix, which is our central ob-
ject of interest, is generated from Tustin approximation of
an analog filter input response and pre-generated chipping
sequence. The horizontal size of the measurement matrix N
corresponds to one processed period [0,T ] of an oversampled
input signal. This dense measurement system representation
enables accurate impulse response representation. Model-
ing the low-pass filter behavior with emphasis on compo-
nent deviations enables the following benchmarking strategy
for recovery sensitivity: the reconstruction system is gener-
ated according to the ideal filter specification, while the ac-
tual analog sampling simulation uses a filter with non-ideal
component values. As one may guess from the system repre-
sentation in (9) or Fig. 4, reconstruction without appropriate
knowledge of the actual deviations in component values will
increase the recovery error.

In order to investigate the performance degradation of
the CS reconstruction, three common recovery methods have
been utilized: Basis Pursuit, Basis Pursuit De-Nosing and
Orthogonal Matching Pursuit [9, 11]. Orthogonal Match-

Algorithm 1 RD acquisition and reconstruction
Input: test signal x (multitone, frequency sparse)

Generate chipping sequence Pc, create P matrix
Declare num. of measurements M, (M < N)← Fs
Set cut-off frequency Fcut =

Fs
2 ← anti-aliasing

Synthesize LP filter and obtain H ∈ RM×N ← h(n)
Create sparsity basis DFT matrix←ΨN×N

for component K1 to Knth do
Change nominal value according to tolerance Tol
Perform random demodulation on x
Reconstruct sparse vector α̂ , using BP, BPDN, OMP
Recover input x: x̂ = Ψα̂

Obtain recovery error vector: x− x̂
Calculate quality of the reconstruction← SNR

SNR = 20 log10(
||x||2
||x−x̂ ||2

)

Compare performances of RD with deviated filter val-
ues SNRtol to the ideal case SNRideal

end for

ing Pursuit (OMP) is the canonical greedy algorithm for
the sparse approximation. In order to solve an underdeter-
mined system of equations using the mentioned algorithms,
the following MATLAB toolboxes have been utilized: CVX3,
SPGL14 and Sparsify5.

4. RESULTS

We perform two types of experiments. First, we simulate
the nominal values case and the 16 worst-case scenarios, i.e.
the worst-case combinations of deviating values of compo-
nents C1, C2, L1, and L2 from (9). We consider two capaci-
tors and two inductors in the low-pass filter (Fig. 3), deviat-
ing from expected values by ±5% and ±10%, respectively.
Performing reconstruction with the changed values, we were
able to estimate recovery performance boundaries for worst-
case scenarios. Fig. 5 illustrates signal recovery performance
(SNRtol values ) of all three algorithms solving underdeter-
mined system of equations low-pass filtered with worst-case
component tolerances. Each separate “corner” has been la-
beled as (c1, . . .c16). The “ideal” figure of merit in the plot
indicates recovery performance in case of the ideal match be-
tween measurement matrix and actual filter component val-
ues. Ideal case reconstruction returns an almost perfectly
recovered signal (' 48.9dB) for convex optimization algo-
rithms BP, BPDN and ' 46dB using the greedy approach
(OMP). Since the amount of noise added to the input is very
small, it is not a surprise that the convex methods perform
alike during benchmark (maximum difference 0.6 dB). OMP
appeared to react slightly different in each test case but the
reconstruction degradation for all of the methods is substan-
tial.

Results of the worst-case simulations indicate a drop in
SNR down to 40dB. Although the extreme cases do not oc-
cur with high probability, when designing RD signal acqui-
sition systems for commercial purposes one cannot neglect
this effect. Since we are focusing on practical issues related
to the implementation, we have also performed Monte Carlo

3CVX: http://cvxr.com/cvx/
4SGPL1: http://www.cs.ubc.ca/labs/scl/spgl1/
5SPARSIFY:www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html
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Figure 6: Monte Carlo simulation results, 500 runs (3σ trun-
cated Gaussian distribution) with multitone input signal with
AWGN at 50dB SNR. Histograms represent number of sim-
ulation runs to SNR of the reconstruction.

simulations with 500 runs, using the same initial conditions
for the input signal. Component values for each examination
iteration were randomly chosen from a truncated Gaussian
distribution. The truncation factor has been set according
to the same component tolerance values as for the worst-case
scenario tests (5%,10%). Fig. 6 shows the simulation results.
The observed average reconstruction quality drop for BP and
BPDN is ' 24dB, and ' 29dB in the case of OMP.

5. CONCLUSIONS

In this paper we have presented an investigation of the com-
mon compressed sensing recovery methods, utilized with the
random demodulator setup. The research elaborates on sys-
tems suffering from component deviations of a filter located
in the analog front-end. Special attention has been paid to the
representation mismatch in the measurement matrix between
the ideal and actual analog front-end model.

The problem analysis emphasizes the implementation as-
pects. When we deal with a real system, sensitivity of the
reconstruction framework plays an important role. Ongo-
ing system fluctuations due to temperature or power supply
changes, as well as static component deviations are difficult
to avoid. A simple, but rather representative filter model was
chosen to be tested under random demodulator setup, with
common compressed sensing recovery techniques applied.
Worst-case scenario simulations reveal substantial recovery
degradation. Reconstruction error increase of up to 40dB
has been observed. Through Monte Carlo experiments we
extend the scope of our methodology towards physical re-
alizations, indicating mean recovery error increase of 24dB

for convex optimization methods and 29dB for the greedy
approach. Performed simulations clearly show that common
CS recovery schemes are highly sensitive to the low-pass fil-
ter component tolerances. This problem deserves special at-
tention when compressed sensing is used to sample moderate
frequency analog signals using the RD framework. More-
over, utilizing low cost off-the-shelf parts without making
additional improvements to the recovery scheme will result
in poor system performance.

Future work of this research will aim at improving the
reconstruction robustness to the measurement matrix inac-
curacy in modeling the analog front-end. The compressed
sensing method of sampling has great potential, but in order
to make it economically reasonable for the industry to adopt,
improved recovery methods need to be developed.
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