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ABSTRACT 

This work presents a statistical analysis of the deficient 

length Least Mean Square algorithm combined with the pre-

diction error method applied to feedback cancellation in 

hearing aids. Deterministic recursive equations to the mean 

coefficient behaviour of the adaptive filters were derived in 

order to assess the performance of the algorithm. The ex-

pected theoretical behaviour was compared with Monte 

Carlo simulations and practical experimental results, show-

ing a very good agreement. The theoretical results can be 

useful to minimize the complexity of the canceller with a 

controlled performance loss. 

 

1. INTRODUCTION 

The sense of hearing is extremely important for social par-

ticipation, communication and personal safety. In a large 

number of cases, hearing aids are capable of compensating 

the deficiencies associated with hearing loss [1]. These de-

vices are very complex systems compounded of a set of sub-

systems which interact with each other to improve intelligi-

bility and provide better acoustical comfort to the user [2]. 

Due to their size and power consumption requirements, the 

availability of computational resources for each subsystem 

is strictly conditioned to the need of the others. As a result, 

each technique must be designed in the most sparingly way.  

One of the most important subsystems of a hearing aid is the 

feedback canceller. The feedback effect occurs due to the 

acoustic coupling between the loudspeaker and the micro-

phone (due to their closeness) and can create a distortion in 

the signal supplied to the user. With the increasing gain of the 

device, this distortion is perceived as annoying whistling 

sounds, and there can be system instability. This problem is 

increased in wide-vent and open-fit equipments [2], due to 

the large opening in the ear-mould, which is needed to pro-

vide acoustic comfort to the user. Without the vent, there is 

the feeling of closed ear and the occlusion effect takes place 

[3]. The ventilation duct favours the acoustic feedback 

through the feedback path, shown as w
o
 in Fig. 1. As a result, 

the maximum possible amplification (without perceived sig-

nal distortion or system instability) is reduced, often prevent-

ing from reaching the necessary amplification to compensate 

the hearing loss. To allow increased amplification, acoustical 

feedback cancellation algorithms are present in most state-of-

the-art hearing aids. Although feedback cancellation is a 

widely approached subject in the scientific literature, few 

papers have addressed the implementation issues related to 

these systems or have investigated its performance in real 

conditions where computational power is limited. 

In this work, a promising feedback cancellation technique 

called “prediction error method” (originally proposed in [4]) 

was analysed for the practical case of interest in which the 

length of the adaptive filter is less than that of the feedback 

path. This condition is called “deficient length case” and oc-

curs when the computational resources are limited by the 

available hardware or when this limitation is deliberately 

imposed by the designer, in order to save mathematical op-

erations [5]. Under such a condition, using the approach de-

scribed in [6], deterministic analytical equations were de-

rived to predict the mean behaviour of the adaptive filters 

coefficients of the prediction error method technique. The 

predicted behaviour, obtained from the derived analytical 

equations, was compared with simulations and with results of 

controlled practical experiments, showing a very good 

agreement for different parameter settings. The obtained re-

sults allow the designer to reduce the feedback canceller 

computational cost with a controlled loss of performance. 

 

Figure 1 – Vent and acoustical feedback. 

2. FEEDBACK CANCELLATION SCHEME 

The feedback cancellation scheme is shown in Fig. 2, where 

n is the discrete time. The characteristics of amplification and 

group delay of the processing routines of the hearing aid are 

part of the called direct path. Without loss of generality, those 

are represented by the gain G and a delay of D samples (z
-D

). 

In this work, in order to simplify the representation of the 

speech signals, the speech model considers only unvoiced 
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sounds. This limitation is a common practice in the analysis 

of the behaviour of hearing aids [6, 7, 8]. The speech signal 

x(n) is modelled by an autoregressive (AR) process with 

transfer function H(z) that contains the parameters of the 

vocal tract [9]. During the production of unvoiced sounds, 

the excitation η(n) can be represented by a white Gaussian 

noise [10] with variance ση
2
. In general, during the occur-

rence of voiced sounds, the adaptation process is paralyzed. 

The feedback path consists of the speaker and microphone of 

the hearing aid, as well as the analog-to-digital, digital-to-

analog converters, and the sound propagation environment. It 

is represented by the vector w
o
 = [w

o
1 w

o
2 … w

o
N ]

T
 , which 

contains the N samples of the related impulse response. An 

initial estimate of w
o
, which is calculated during the fitting 

process of the hearing aid, is stored in the vector wc. The 

cancelling filter v(n) contains the coefficients of the adaptive 

filter.  After a previously defined number of iterations, ensur-

ing a consistent estimate, the elements of v(n) are added to 

wc, v(n) is reset to a vector composed of zeros and the adap-

tation process restarts. Vector ˆ ( )nq  is a copy of the prediction 

error filter q(n), which is responsible for obtaining the pre-

diction error eq(n) [7]. The impulse responses wcm and wcm
-1

 

are defined ahead, but ideally, their convolution should result 

in the unit sample function. 

3. PREDICTION ERROR METHOD 

The update equations for the cancelling filter v(n) = [ v1(n) 

v2(n) … vM(n) ]
T
 and for the prediction error filter q(n) = [ 1 

-p(n) ]
T
, are 

 ( 1) ( ) ( ) ( )v qn n e n nµ+ = +v v u  (1) 

and 

 ( 1) ( ) ( ) ( 1)qn n e n nρ+ = + −p p e  (2) 

where µ and ρ are the step sizes, uq(n) = [ uq(n) uq(n-1) … 

uq(n-M+1) ]
T
, e(n-1) = [ e(n-1) e(n-2) … e(n-K) ]

T
 and vec-

tors v(n) and p(n) have lengths M and K, respectively.  

4. THEORETICAL ANALYSIS 

In this section, the theoretical models developed in [6] to 

predict the mean coefficients behaviour of the adaptive fil-

ters v(n) and p(n) are generalized for the case of deficient 

length [5]. To this end, the top of Fig. 2 (above the dashed 

line) is assumed stationary, i.e., wc is not updated. 

Considering slow adaptation of q(n) [11],  

 ( ) ( ) ( ) ( ) ( ) ( )
TT T

v q q c qqe n x n n n n n= − + −o
u w u w u v  (3) 

where xq(n) represents the signal x(n) filtered by q(n) and 

( )q nu = [ uq(n) uq(n-1) … uq(n-N+1) ]
T
. With wc stationary, 

the prediction error may be taken as 

 ( ) ( ) ( 1) ( ) ( 1) ( )
TT T

qe n n n n n nη= − − − − −x h u v e p  (4) 

where x(n-1) = [ x(n-1) x(n-2) … x(n-L) ]
T
  and ( )nu = [ u(n) 

u(n-1) … u(n-N+1) ]
T
. The error vector v = [ wc

 T
 0

T
 ]

T
 - w

o
 is 

given from the concatenation of vector wc, of dimension 

(M×1), and the zero vector 0 = [ 0 0 … 0 ]
T
, of dimension (N-

M×1), and the vector w
o
 for M < N. The coefficients of the 

AR process H(z) are represented by the vector h of size L. 

Taking the expected value of (1) and (2),  after substitution of 

(3) and (4), respectively, we obtain: 

 E{ ( 1)} [ ]E{ ( )} [ ]n nµ µ+ = − − −uquq uquq uqxqv I R v R v r (5) 

and 

 E{ ( 1)} [ ]E{ ( )} [ ]n nρ ρ+ = − − +ee eu exp I R p R v R h  (6) 

where it was assumed independence between uq(n)uq
T
(n) 

and v(n), as well as between e(n)e
T
(n-1) and p(n) [12]. Also 

 

E{ ( ) ( )}   E{ ( 1) ( 1)}

E{ ( ) ( )}   E{ ( 1) ( )}

E{ ( ) ( )}      E{ ( 1) ( 1)}

T T
q q

T T
q q

T
q q

n n n n

n n n n

n x n n n

 = = − −


= = −


= = − −

uquq ee

uquq eu

uqxq ex

R u u R e e

R u u R e u

r u R e x

 (7) 

The matrix uquqR  is given by the first M columns of the 

matrix uquqR , whose elements are defined by [6]: 

 

1 1
2

( , )
                        (  1,2, ,  ;  1,2, ,  )1 1

E{ ( )}E{ ( )} ( )

K K

uquq i j k l ee
i M j Nk l

R G q n q n r l j i k

+ +

= == =

= + − −∑∑
K K

(8) 

where qk (n) and ql (n) are elements of q(n). The remaining 

elements of (5) and (6) are 

 

1 1

( )
                                                    (   1,2,...,  )1 1

E{ ( )}E{ ( )} ( 1 )

K K

uqxq i k l xe
i Mk l

r G q n q n r l i k D

+ +

== =

= + − − +∑∑ (9) 

 { 1,2,...,
( , ) 1,2,...,( ) i K

ee i j ee j KR r i j =
== −  (10) 

 { 1,2,...,
( , ) 1,2,...,( 1) i K

eu i j ee j NR Gr i j D =
== − − +  (11) 

 { 1,2,...,
( , ) 1,2,...,( ) i K

ex i j xe j LR r i j =
== −  (12) 

where rab(l) = E{a(n)b(n-l)} is the correlation between the 

generic random variables a(n) and b(n). Following the cal-

culations described in [8]: 

 ( ) ( ) ( )T
ee xer l r l G l D= − −eer v  (13) 

and 

 

2 1 1

1 1 1

( ) [1 ( ) ( ) ]
( )

 ( )  (1 ) 

l L DL
k k k

xe
L L

k i ii k i k
i k

a G a a
r l

a a a a

ησ
− + −

= = =
≠

− + − −
=

− −
∑ Π Π

ψ v
 (14) 

for l ≥ 1-L, ree(l-D) = [ ree(l-D) ree(l-D-1) … ree(l-D-N-1) ]
T
, 

ψψψψ(-ak) = [ 1 -ak
-1

 -ak
-2

 … -ak
-N+1

 ]
T
 and the coefficients -ak are 

poles of H(z). 

 

Figure 2 – Feedback cancellation scheme. 
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4.1 Steady-State Conditions 

In steady-state, assuming convergence of the coefficients, 

equations (5) and (6) result in: 

 
1 1

lim E{ ( )}
n

n
− −

→∞
= − +uquq uquq uquq uqxqv R R v R r  (15) 

and 

 
1 1

lim E{ ( )}
n

n
− −

→∞
= − −ee eu ee exp R R v R R h  (16) 

In the case of sufficient length, v(n) converges to the non-

cancelled part of w
o
 (difference between w

o
 and wc), in addi-

tion to a bias term Ruquq
-1

ruqxq. This term is function of xq(n) 

and can be reduced by the filtering process realized by q(n). 

Equations (15) and (16) generalizes the results presented in 

[6] for the deficient case. 

5. EXPERIMENTAL SETUP 

The acoustic chamber built for the practical experiments is 

shown in Fig. 3 and consists of a Medium Density Fibre-

board box with dimensions 100 × 70 × 70 cm
3
, internally 

covered with 5 cm of acoustic insulation foam. It contains a 

loudspeaker (Edifier R1000TCN), a mobile screen and a 

conventional mannequin with a silicone ear and acoustic 

canal. A Behind-The-Ear digital hearing aid (Voyager GN 

Resound) was positioned with the speaker attached to the 

ear-mould through a plastic tube. The ear-mould has a vent of 

1 mm in diameter. The microphone and speaker of the hear-

ing aid were connected to the Voyageur Dedicated Develop-

ment Platform (Sound Design Technologies), which is based 

on the GA3280 [13] hybrid circuit (5.46 × 3.15 × 1.70 mm
3
). 

The sampling frequency was 15.625 kHz and the audio sam-

ples were quantized with 20 bits. 

 

Figure 3 – Internal view of the acoustic chamber. 

In the experiments, digitally recorded sounds were repro-

duced by a secondary loudspeaker to provide repeatability. 

Nevertheless, it was verified that the effects of the loud-

speaker, sound propagation environment and microphone 

(impulse response wcm in Fig. 2) changed the statistical prop-

erties of the desired speech signal. Thus, a fixed compensa-

tion filter with impulse response wcm
-1

 was used to equalize 

the undesired effects and permit fair comparisons between 

analytical results and practical experiments. However, ob-

taining the transfer function Wcm
-1

(z) of wcm
-1

 by inverting the 

transfer function Wcm(z) of wcm is not possible due to the lat-

ter being non-minimum phase. A stable solution that provides 

a close approximation to the unstable transfer function Wcm
-

1
(z) was achieved through adaptive inverse modelling [14]. 

5.1 System Configuration 

The feedback path impulse response w
o
, identified in the 

acoustic chamber, is shown in Fig. 4. It was used to obtain 

theoretical predictions by equations (5) and (6). The vector 

wc was initialized with zeros and was not updated. It was 

experimentally verified that distortions caused by wcm were 

adequately compensated by the fixed compensation filter 

wcm
-1

. The input signal was a simulated unvoiced utterance 

modelled by a 21 order autoregressive model H(z), estimated 

by the Burg method [15], obtained from a 20 milliseconds 

male speaker epoch of the /s/ phoneme. The coefficients of 

the AR process H(z) contained in vector h are shown in 

Fig. 5. The variance ση
2
 was empirically defined so that the 

variance of the speech signal x(n) corresponded to 60 dB SPL 

(sound level of a normal conversation). 

 

Figure 4 – Impulse response wo. 

 

Figure 5 – Coefficients of the AR process H(z). 

6. RESULTS 

In this section, the theoretical performance of the prediction 

error method, given by equations (5) and (6), is compared 

with Monte Carlo simulations [16] and practical experiments 

for different lengths of v(n) and p(n) as shown in Table 1. For 

each setup, 10 realizations were made each one with 2⋅10
6
 

iterations. Due to practical limitations of the Voyageur plat-

form, the coefficients were extracted with a decimation factor 

of 2000.  The same procedure was performed on the theoreti-
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cal results and simulations to enable comparison. The ex-

periments were carried out with small step sizes in order to 

support the considerations used on the derivation of the theo-

retical model. The direct path delay is known to reduce the 

bias term Ruquq
-1

ruqxq [8], however it should be kept under 6 

ms to avoid user discomfort [17]. The chosen value of D 

corresponds to 5ms for the sampling frequency used.  

6.1 Coefficients Evolution 

Figs. 6 to 8 illustrate the mean coefficients behaviour of 

v21(n), v22(n) and v24(n), respectively, for different lengths of 

the cancelling filter v(n).  
 

 

Figure 6 – Mean evolution of the coefficient v21(n) for K = 21. 

 

Figure 7 – Mean evolution of the coefficient v22(n) for K = 21. 

 

Figure 8 – Mean evolution of the coefficient v24(n) for K = 21. 

The optimal values for each coefficient shown, correspond-

ing to the samples of the feedback path w
o
, are illustrated by 

a dotted horizontal straight line. In Figs. 6 and 8, a zoomed 

inset has been added to allow a better distinction among the 

curves in steady-state conditions. 

6.2 Misadjustment of the Coefficients 

In Figs. 9 and 10, the misadjustment of the coefficients, de-

fined as 

 

 

2

2

2

2

E{[ ( ) ] [ ]}
( ( ), )

T T T
n

nζ
− −

=
−

v 0 v
v v

v
, (17) 

 

provides an overview of the general behaviour of v(n). In 

(17) the symbol 2|| . ||  represents the Euclidean norm. In 

Fig. 9, the length K of p(n) is kept fixed, while the length M 

of v(n) is kept fixed in Fig. 10. In both cases, the misadjust-

ment is presented in a dB scale. 

 

 

Figure 9 – Misadjustment of v(n) for K=21. 

Table 1 – Algorithm parameters. 

Parameter Symbol Value 

   Direct path gain G 6  

Direct path delay D 78 

Step size of v(n)  µ 0.02 

Step size of q(n) ρ 32 

Length of v(n) M 25, 26 and 50 

Length of p(n) K 3, 7, 9 and 21 
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Figure 10 – Misadjustment of v(n) for M=50. 

7. DISCUSSION 

As predicted by equation (15), the bias prevents the adaptive 

coefficients to reach the optimum values in steady-state. In 

Figs. 6 and 8, the experimental results tend to follow the 

model predictions and simulations results, regardless the 

closeness to the optimum values. In Fig. 7, the theoretical 

model and simulation results are below the optimal value 

while the experimental results are concentrated above it. 

However, in each case, the proportion between the curves 

remains for different values of M. Despite differences in the 

evolution of some individual coefficients, the misadjustment 

of the coefficients (Figs. 9 and 10) indicates a global excel-

lent agreement between model, simulation and practical ex-

periments. In Figs. 9 and 10, it is observed that the model is 

slightly conservative, since the practical results are in general 

slightly better than the theoretically expected. In Fig. 9, the 

vector [ v
T
(n) 0

T
 ]

T
 approaches w

o 
in steady-state, with in-

creasing M. The same happens in Fig. 10 with the increasing 

length of the predictor. Also in Fig. 10, it is shown that the 

use of the predictor accelerates the convergence of the can-

celling filter v(n) and minimizes the bias. The presented 

speech production model considered only unvoiced sounds. 

8. CONCLUSION 

This work presented an analytical model for the mean coeffi-

cients behaviour of the deficient length LMS algorithm, as-

sociated with the prediction error method for feedback can-

cellation in hearing aids. Statistical simulations and practical 

experiments using a dedicated signal processor confirm the 

validity of the results. The derived equations can be used to 

design the canceller with a minimum complexity for a de-

sired performance. 
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