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ABSTRACT 

New generations of speech and audio codecs have several 

complex types of impairment. To assess their quality, tele-

communication laboratories perform subjective and/or ob-

jective assessments. Anchor signals are required to get reli-

able subjective assessment and comparable results of studies 

performed at different moments or results of studies from 

different laboratories. The design of these signals needs a 

description of the impairments useful to find out their corre-

lated physical characteristics. Assuming that codecs quality 

is multidimensional, the codecs were projected into a per-

ceptive space whose principal axes represented their main 

impairments. We carried out a verbalization task to label 

these main dimensions. A Multiple Factor Analysis high-

lighted a four-dimensional perceptive space. Two of these 

dimensions were modelled and validated. The proposed ref-

erence signals allowed covering the defaults of two different 

coding techniques. 

 

INTRODUCTION 

The quality of speech and audio codecs is important in the 

high competitive world of telecommunications where voice 

communication remains one of the most used services. Im-

provement of codecs quality is assessed by subjective and/or 

objective tests. Due to the subjective nature of voice, subjec-

tive assessment remains the most reliable. However, codec 

ratings can differ significantly from one subject to another 

one. Moreover, results of assessment tests run at different 

periods and/or in different laboratories are difficult to com-

pare, when these tests are not based on a reference system. 

Law and Seymour [1] proposed a reference system, the 

MNRU (Modulated Noise Unit Reference) for the earlier 

codecs, the log-PCM waveform coding systems. The 

MNRU system assumes that speech and audio codecs qual-

ity depends only on the Signal-to-Noise Ratio, waveform 

codecs having just quantization noise as impairment. In the 

80’s the MNRU has been standardized by ITU-T (Standardi-

zation section of the International Telecommunication Un-

ion) in [2]. 

However, recent codecs use new compression techniques and 

have other types of impairment. Therefore, the MNRU sys-

tem is no longer adapted to their assessment. The purpose of 

our study was to elaborate a new reference system intended 

to replace the MNRU. In this phase, the work was limited to 

wideband codec applied on clean speech, focusing on intrin-

sic quality of codecs and transmission impairments were not 

taken into account. The different steps of this work were first 

to find the main dimensions of the perceptive space in which 

new generation codecs can be projected. Then, we ran a ver-

balization task to label these main dimensions. Identifying 

these dimensions helped in finding the physical characteris-

tics to which they were correlated, the goal being to create a 

new reference system linked to these dimensions. 

In this paper, after describing the MNRU system in section 1, 

we present in section 2 the main results of a previous study 

which highlighted that codecs quality can be projected in a 

four-dimensional space. In section 3, we describe the refer-

ence signals designed to model two dimensions of this per-

ceptive space. Section 4 is devoted to the description of the 

validation phase. The statistical analysis is developed in sec-

tion 5 and results are discussed in section 6 before conclud-

ing. 

 

1. REFERENCE SIGNALS AND MNRU 

Since speech and audio signal quality is intrinsically subjec-

tive, its assessment depends on the “rater” involved. Let S  

be an original speech or audio signal and Ŝ  the signal dis-

torted by a system under assessment. Reference signals cor-

respond to the original signal S  transformed by different 

functions such as they reproduce as close as possible the 

distorted signal in the perceptive domain. These reference 

signals are useful to: 

• help subjects in rating tasks,  

• allow comparison of results obtained by a labora-

tory across time, 

• allow comparison of results across laboratories, 

• allow validating objective assessment models. 

At the beginning of speech coding, the only impairment of 

codecs was quantization noise and the MNRU was designed 

to reproduce it. Let S  be the original signal, N a Gaussian 

white noise and Q  the ratio, in dB, of speech power to 

modulated noise power. The MNRU system generates an 

output signal Y  defined by: 

( )/ 2010 Q
Y S S N H

−= + ⋅ ∗ . 

The symbol ∗  represents the convolution and H is the im-

pulse response of a filter whose bandwidth depends on the 

system under study. Let ( )1 2
, , ,

n
c c cΓ = �  be a set of n  

codecs whose quality must be evaluated. The j  MNRU 

signals are introduced in Γ  to get a new set 
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the reference signal obtained by the MNRU process depend-

ing on the kSNR Q . The new set is easier to assess than the 

initial set because the , 1, 2, ,
kQ

MNRU k j= � , constitute a 

reference scale that helps the subject in rating the other sig-

nals. However, the recent codecs have other types of im-

pairment and the one-dimensional character of codec quality 

is no longer true. 

 

2. PREVIOUS STUDY 
In a previous study [3], a dissimilarity test was run on a se-

lected group of recent codecs in order to get dissimilarity 

matrices which represent the perceptive pairwise distances 

between these codecs. 
 

2.1 Dissimilarity test  
As the study focused on new generation of codecs, we se-

lected a set of 19 wideband and super wideband codecs [3]. 

The transmission impairments were not considered. In order 

to take into account several types of compression tech-

niques, they were chosen among different families of co-

decs. In order to highlight the impairments of the codecs, we 

applied two or three times a tandeming technique. From the 

58 stimuli (19×3 + the original signal), we retained 20 co-

decs/tandems which were approximately in the same range 

of quality (around the middle of the Mean Opinion Score 

scale). The codecs/tandems finally retained (index 1 to 20) 

are presented in Table 1 and their characteristics are given in 

Table 2. Stimuli were obtained by processing the original 

signal by the 20 codecs/tandems. The original signal was a 

double sentence uttered by a male speaker and separated by 

a short silence (6-second total duration). We carried out a 

listening test where subjects were asked to rate the distance 

they perceived by pairwise comparison. A dimensional re-

duction technique allowed obtaining a four-dimensional 

space [3]. The next step of the study consisted in labelling 

these dimensions through a verbalization task. 
 

Index Description Index Description 

1 G722.1C_24kbps_x2 11 G722_56kbps_x2 

2 G722.1C_24kbps_x3 12 G722_56kbps_x3 

3 G722.1_24kbps_x2 13 G729.1_14kbps_x3 

4 G722.1_24kbps_x3 14 G729.1_20kbps_x3 

5 G722.2_12.65kbps_x2 15 G729.1_24kbps_x2 

6 G722.2_12.65kbps_x3 16 G729.1_32kbps_x3 

7 G722.2_15.85kbps_x2 17 HEAAC_24kbps_x2 

8 G722.2_8.85kbps_x2 18 HEAAC_32kbps_x2 

9 G722_48kbps_x2 19 MP3_32kbps_x1 

10 G722_48kbps_x3 20 MP3_32kbps_x2 

Table 1 – Codecs/tandems under assessment (x2 and x3 mean re-

spectively that tandem speech coding is applied two and three times 

to the considered codec) 
 

Codecs Technical characteristics 

G722.1C [5] Modulated Lapped Transform (MLT) 

G722.2 [6] Algebraic Code Excited Linear Prediction (ACELP) 

G722 [7] Waveform codec 

G729.1 [8] Hybrid codec 

HEAAC 
Modified Discrete Cosine Transform (MDCT) 

MP3 

Table 2 – Technical description of codecs under assessment 
 

2.2 Dimensions of the perceptive space 
Listeners were asked to describe with their own vocabulary 

the impairments they perceived on the 20 codecs/tandems 

selected. The analysis of this verbalization test highlighted 

that the two preponderant dimensions were labelled by the 

attributes “muffled” and “background noise” [3]. The re-

maining two dimensions were more difficult to label so that 

no reference signals were derived. 

 

3. DERIVED REFERENCE SIGNALS 

The first experimentation showed that codec quality could 

be described in a four-dimensional space. The two first di-

mensions were characterized and two reference signals were 

proposed.  
 

3.1 First reference signal  
A muffled sound is a sound whose bandwidth is limited to-

wards the high frequencies. Thus, the function designed for 

the first dimension is a low-pass filter whose cut-off fre-

quency is at least 3400 Hz (the upper limit of the narrow-

band). The reference signal of the first dimension was ob-

tained by applying the above filter with different cut-off 

frequencies to the original signal. 
 

3.2 Second reference signal  

Listening to the stimuli presenting the most “background 

noise” (stimuli 9, 10, 11 and 12) [4], listeners noticed that 

this noise was always present in the silence. Consequently, 

the reference signal was obtained by adding a Gaussian 

white noise to the original signal. The SNR  was controlled 

by the gain of an amplifier.  

 

4. VALIDATION PHASE 
After designing the reference signals we ran a new dissimi-

larity test followed by a new verbalization task to validate 

them. 
 

4.1 Dissimilarity test  
The set of stimuli of this test was composed of the previous 

20 codecs/tandems, three reference signals for the first di-

mension and three reference signals for the second dimen-

sion. The first dimension reference signals were the original 

signal filtered by a low-pass filter whose cut-off frequency 

was respectively 3500 Hz (index 21), 4500 Hz (index 22) 

and 5500 Hz (index 23). The second dimension reference 

signals were the original signal corrupted by an additive 

white Gaussian noise such as the SNR  was respectively 35 

dB (index 24), 45 dB (index 25) and 55 dB (index 26). 

We recruited 30 subjects to participle to the dissimilarity test. 

During the test, the listeners were asked to give a score from 

0 to 100 that reflected the perceptive distance between two 

stimuli. A null score indicated that stimuli were strictly simi-

lar whereas a score equal to 100 meant they were really dif-

ferent. Two of the listeners were felt unreliable (they indi-

cated high values for null pairs) and were discarded from this 

study. After the dissimilarity test, the subjects were asked to 

qualify with “attributes” the impairments they perceived on 

the 26 stimuli.  
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4.2 Verbalization task 
After completion of the dissimilarity test, the 28 subjects 

retained were asked to describe the impairments they per-

ceived on the stimuli first by using words from a panel of 

attributes provided (pre-defined list) and also via their own 

vocabulary. 
 

Label Attribute Label Attribute 

RV Robot voice BR Breath 

MF Muffled DS Distorted speech 

SC Scratching CR Crackling 

HS Hissing EC Echo 

BN Background noise EV Energy variation 

MN Modulated noise   
 

Table 3 – Retained attributes for the verbalization task 

5. STATISTICAL ANALYSIS 

Multiple dissimilarity matrices are usually analyzed with a 

three-way MultiDimensional Scaling (MDS). In our study, 

we used a three-way factor analysis technique, the Multiple 

Factor Analysis (MFA) presented in [9]. MFA aims at analyz-

ing a set of objects described by different groups of variables. 

In our case, we applied MFA to the dissimilarity matrices. 
 

5.1 Preprocessing of dissimilarity matrices 
The 28 dissimilarity matrices of the 28 listeners who com-

pared 26 codecs ( 26 26× matrices) were first transformed 

into Euclidean distance matrices { }, 1, , 28kE k ∈ � . Then, a 

Principal Component Analysis (PCA) was applied to each 

Euclidean distance matrix in order to obtain a representation 

of the 26 codecs in a 
kp  dimensional and orthogonal space, 

with kp  the dimension of the space for listener k . Let us 

note 
k

X  the matrix representing the 26 codecs (lines) in the 

kp  factorial space (columns) for listener k . The 28 
kX  

were concatenated and submitted to MFA. 
 

5.2 MFA algorithm 

Let X  be the concatenation of { }, 1, , 28
k

X k ∈ � , X  is a 

26 p×  matrix where 
28

1 kk
p p

=
=∑ . 

MFA can be viewed as a double PCA which processes in two 

steps: 

1. A PCA is performed on each kX . The first eigenvalue 

k
λ  is extracted and used to compute the weighted matrix 

k k k
Z X λ=  

2. A global PCA is performed on [ ]1 28, , , ,kZ Z Z Z= � � . 

Eigenvalues of this global PCA allows determining the opti-

mal number of dimensions. 
 

5.3 Integration of verbalization data in MFA 

The MFA allows analyzing simultaneously quantitative and 

qualitative variables. For each listener, we derived from the 

verbalization task a matrix indicating which attributes he/she 

cited to qualify a codec. The rows of the verbalization matri-

ces represented the codecs and the “attributes” were repre-

sented by the columns. For each stimulus, we put “1” if the 

subject quoted the attribute and “0” otherwise. The 28 indi-

vidual matrices were summed up into one single matrix con-

taining for each codec (row) the number of times each attrib-

ute (column) was cited by the 28 listeners. Attributes or 

words with too few citations were merged with attributes 

having similar meanings. Finally, eleven attributes were kept 

(Table 3). This matrix was then transformed into the percent-

age 26×11 matrix V , indicating for each codec the percent-

age of citation of each attribute among all attributes cited for 

this codec. It is the quantitative representation of the verbali-

zation matrix. Then the median value of the citation percent-

age of each attribute was computed and attributes were bi-

nary coded as follows:  

Let j
m  be the median value of citation percentage for attrib-

ute j . The binary verbalization matrix W  was defined as: 

( )
( )attribute" " if ,  > 

,
" " (nothing) otherwise


= 


jj V i j m
W i j . 

The matrix finally analyzed by the MFA was the concatena-

tion of X , V  and W . All elements of X  were considered 

as active in the analysis, whereas the elements of V  and W  

were considered as supplementary, i.e. they did not partici-

pate in determining the perceptive space, but were used to 

qualify a posteriori the factors obtained. 
 

Table 4 – Quantitative verbalization matrix V (the last value of 

each column represents the mean of all other values of the column) 

Index RV MF SC HS BN MN BR DS CR EC EV 

1 0.37 0.03 0.03 0 0.11 0.03 0.16 0.11 0.03 0.16 0 

2 0.26 0.03 0 0.03 0.13 0.08 0.08 0.15 0.03 0.18 0.05 

3 0.29 0.05 0 0.02 0.1 0.02 0.05 0.07 0.1 0.27 0.02 

4 0.38 0.06 0 0.03 0.03 0.03 0.06 0.06 0.09 0.21 0.06 

5 0.16 0.38 0 0 0.11 0.02 0.04 0.09 0.04 0.07 0.09 

6 0.13 0.23 0 0 0.08 0 0.08 0.13 0.06 0.15 0.15 

7 0.14 0.51 0 0 0.09 0 0.09 0.06 0.03 0.03 0.06 

8 0.21 0.3 0 0.02 0.02 0.02 0.05 0.05 0.09 0.12 0.12 

9 0.1 0.08 0.06 0.02 0.21 0 0.14 0.04 0.33 0.04 0 

10 0.04 0.07 0.02 0.04 0.18 0.02 0.12 0.02 0.37 0.12 0.02 

11 0.02 0.02 0 0.07 0.28 0 0.13 0.04 0.35 0.07 0.02 

12 0 0.05 0 0.02 0.31 0.02 0.21 0 0.31 0.05 0.02 

13 0.21 0.25 0.03 0 0.11 0.05 0.03 0.1 0.1 0.05 0.08 

14 0.12 0.17 0 0 0.14 0.03 0.05 0.19 0.09 0.1 0.12 

15 0.13 0.17 0 0 0.15 0.09 0.02 0.21 0.09 0.09 0.06 

16 0.17 0.06 0 0.02 0.17 0.02 0.06 0.14 0.14 0.1 0.14 

17 0.3 0.02 0 0 0.04 0 0.09 0.13 0.17 0.23 0.02 

18 0.18 0.04 0 0.04 0.11 0 0.13 0.09 0.22 0.18 0.02 

19 0.24 0.07 0 0 0 0.02 0.07 0.07 0.16 0.36 0.02 

20 0.44 0.02 0 0.02 0.02 0.02 0.04 0.04 0.14 0.22 0.04 

21 0.07 0.58 0.03 0 0.07 0 0.07 0 0.07 0.1 0.03 

22 0.09 0.53 0 0 0.09 0 0.03 0.06 0.03 0.09 0.06 

23 0.04 0.48 0 0 0.12 0.04 0.04 0.04 0.04 0.12 0.08 

24 0 0.02 0 0.02 0.42 0.02 0.17 0 0.29 0.02 0.02 

25 0.02 0.04 0 0.09 0.28 0 0.22 0.02 0.26 0.04 0.02 

26 0.05 0 0.03 0.03 0.43 0.03 0.24 0 0.16 0 0.03 

Mean 0.16 0.16 0.01 0.02 0.15 0.02 0.09 0.07 0.14 0.12 0.05 
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6. RESULTS 

6.1  Verbalization task 
A first analysis of Table 4 suggests the following character-

istics for the families of codecs: the MLT family (stimuli 1, 

2, 3 and 4) was qualified by RV and EC. CELP codecs 

(stimuli 5, 6, 7 and 8) were qualified by MF, the waveform 

codecs (stimuli 9, 10, 11 and 12) were characterized by BN, 

BR and CR, and the hybrid family (stimuli 13, 14, 15 and 

16) was essentially characterized by MF and DS. The trans-

form codecs based on MDCT (stimuli 17, 18, 19 and 20) 

were characterized by RV, CR and EC. Moreover, the refer-

ence signals 21, 22 and 23 constructed as MF were actually 

characterized by MF and the reference signals 24, 25 and 26 

constructed to represent BN were characterized with BN, 

BR and CR. The created reference signals were able to re-

produce the following defaults: BN, BR, CR, and also MF. 

Comparatively, defaults characterizing the transform codecs 

such as RV and EC are still to be elaborated as well as the 

default DS present in hybrid codecs (Table 4). 
 

6.2  Dimensions from the dissimilarity test 

The number of dimensions of the perceptive space was de-

termined from the eigenvalues plot. Figure 1 displays an 

elbow between the 4
th

 and 5
th
 dimensions. After dimension 

5, the variation in eigenvalues was very low. Furthermore, 

the 3
rd

 and 4
th
 eigenvalues were approximately the same 

(respectively 10.55 and 10.35). We set to four the number of 

dimensions of the perceptive quality space. This result rein-

forces the four-dimensional space found in the previous 

study [3]. This indicates that the reference signals inserted in 

the test did not modify the perceptive space. 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Eigenvalues plot 

6.3  Plausibility of dimensions 
6.3.1 First dimension 

The first dimension represented 17.6 % of the total explained 

variance. It separated the muffled codecs from the others. As 

shown in Figure 2, the reference signals designed to model 

the MF characteristic were grouped with the most muffled 

codecs [4] in plane (Dim 1, Dim 2) of the perceptive space. 

The Table 4 indicates clearly that the stimuli 5, 6, 7, 8, 13, 

14, 15, and 16 had the highest occurrence percentages of 

attribute MF. Moreover, Pearson’s correlations between the 

dimensions and the attributes represented in Table 5 display 

high negative values for the attribute MF (-0.8). The most 

important contributions of the codecs in the first dimension 

were those of stimuli 13, 21, 22, 14, 8 and 6 (respectively 

equal to 13.8%, 10.6%, 7.7%, and around 6% for the last 

three). These contributions were higher than 4% (the contri-

bution value of the stimuli if their contributions were all 

equal). These results confirm the MF attribute for dimension 

1. 
 

6.3.2 Second dimension 

The second dimension contributed for 11.4% of the total ex-

plained variance. Figure 2 shows that the group of stimuli 9, 

10, 12, and the reference signals of 24, 25 and 26 were the 

only stimuli having positive coordinates on this dimension. 

The rank order of these stimuli along this second dimension 

followed their noise level. As seen in Table 4, these codecs 

had a high frequency of nomination for attribute BN and low 

frequencies for attributes DS, RV and EC. The stimuli 1 and 

2 were located at the extreme opposite side and they contrib-

uted to 6% to this dimension. These results were consistent 

with those presented in Table 4: stimuli 1 and 2 had high 

frequencies of nomination for DS, RV and EC. A high nega-

tive correlation was observed between the second dimension 

and the attributes RV, EC and DS and a positive correlation 

was observed with BN. Since the second dimension sepa-

rated the stimuli characterized by the BN attribute from the 

others, this dimension represented the opposition between 

attributes BN and RV/EC. The background noise reference 

signals 24, 25 and 26 might have a too high signal-to-noise 

ratio so that the resulting perceptive space was impacted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Attributes and stimuli plot in (Dim 1, Dim 2) plane 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Attributes and stimuli plot in (Dim 2, Dim 3) plane 
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Figure 4 – Attributes and stimuli plot in (Dim 3, Dim 4) plane 

 

Table 5 – Correlations between attributes and dimensions 

 

6.3.3 Third dimension 

The third dimension represented 8.9% of the total variance. 

The attributes EC and RV had high positive correlations (re-

spectively 0.59 and 0.52) with this dimension whereas the 

attribute BN had a high negative correlation (-0.58) (see Ta-

ble 5). Dimension 3 was strongly characterized by the ex-

treme position of the stimuli 17 and 20 and also by the posi-

tion of the stimuli 18 and 19. Table 4 shows that these stimuli 

were mostly characterized by a high frequency of nomination 

for the attributes EC and RV and a low frequency for the 

attribute BN. The relative position of stimuli 17 and 18 on 

this dimension was explained by the lower bitrate of stimulus 

17. Similarly, the relative position of stimuli 19 and 20 was 

explained by the higher number of tandeming for stimulus 20 

compared to stimulus 19. Stimulus 20 was a twice tandeming 

of a MP3 codec at a rate of 32 kbps whereas stimulus 19 cor-

responded to this codec itself. From these analyses, we la-

belled the third dimension with the EC/RV attribute. 
 

6.3.4 Fourth dimension 

The fourth dimension contributed to 8.7% of the total ex-

plained variance. The correlation matrix (Table 5) shows that 

the best attributes that described the fourth dimension were 

CR, DS and MN. Now, the stimuli 13, 14 which were the 

most contributory to the fourth dimension (respectively 27% 

and 22%), and to a lesser extent stimuli 15 and 16, were also 

characterized by the attribute DS as shown in Table 4. There-

fore, we labelled the fourth dimension with the DS attribute. 

 

7. CONCLUSION 

In this study we presented the analysis of the perceptive qual-

ity of codecs using MFA. After running out dissimilarity 

tests, we found that the perceptive quality of new generation 

of codecs could be described in a four-dimensional space. 

Thanks to the verbalization task, we tried to associate labels 

to each stimulus, characterizing the codecs with attributes. 

Each family of coding techniques can be characterized by a 

set of attributes.  

The MLT family (stimuli 1, 2, 3 and 4) was characterized by 

“robot voice” and “echo” attributes, CELP codecs (stimuli 5, 

6, 7 and 8) by “muffled” attribute, the waveform codecs 

(stimuli 9, 10, 11 and 12) by “background noise”, “breath” 

and “crackling” attributes. The hybrid family (stimuli 13, 14, 

15 and16) was labelled by “muffled” and “distorted speech” 

attributes. The transform codecs based on MDCT (stimuli 17, 

18, 19 and 20) were characterized by “robot voice”, “crack-

ling” and “echo” attributes. 

From now on, reference signals representing the “muffled” 

attribute (stimuli 21, 22 and 23) and reference signals repre-

senting “background noise”, “breath” and “crackling” (stim-

uli 24, 25 and 26) allow covering the defaults of two families 

of coding techniques, CELP codecs and waveform codecs. 

Reference signals revealing the defaults “distorted speech” 

and “robot voice/echo” remain now to be generated in order 

to complete the set of reference signals. 
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Attributes Labels Dim1 Dim2 Dim3 Dim4 

Robot voice RV 0.06 -0.64 0.52 -0.02 

Muffled MF -0.8 0.27 0.11 -0.31 

Scratching SC 0.05 0.22 0.01 0.17 

Hissing HS 0.55 0.23 -0.36 0.01 

Background noise BN 0.41 0.48 -0.58 0.16 

Modulated noise MN -0.15 -0.37 -0.15 0.25 

Breath BR 0.64 0.37 -0.37 -0.02 

Distorted speech DS -0.3 -0.66 0.05 0.26 

Crackling CR 0.69 0.34 -0.24 0.26 

Echo EC 0.18 -0.46 0.59 -0.15 

Energy variation EV -0.72 -0.24 -0.25 0.08 
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