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ABSTRACT

In this paper, we address the problem of unsupervised de-
tection of anomalies in hyperspectral images. Our proposed
method is based on a novel statistical background modeling
approach that combines local and global approaches and does
not assume Gaussianity. The local-global background model
has the ability to adapt to all nuances of the background pro-
cess, like local models, but avoids overfitting that may result
due a too high number of degrees of freedom, producing a
high false alarm rate. This is achieved by globally combin-
ing the local background models into a “dictionary”, which
serves to remove false alarms. Experimental results strongly
prove the effectiveness of the proposed algorithm. These re-
sults show that the proposed local-global algorithm performs
better than several other local or global anomaly detection
techniques, such as the well known RX or its Gaussian Mix-
ture version (GMM-RX).

1. INTRODUCTION

The detection of materials and objects using remotely sensed
spectral information collected by hyperspectral sensors has
many civilian and military applications. Detection algo-
rithms exploit the spectral information present in hyperspec-
tral data to detect and discriminate localized man-made ob-
jects, e.g., small buildings, vehicles, etc. In anomaly detec-
tion, no prior knowledge on the target spectral signature is as-
sumed. Therefore, anomaly detection algorithms first model
the abundant materials spectra (background process). Then,
every pixel or group of pixels spectrally different in a mean-
ingful way from the background process are declared to be
anomalies.

According to the hyperspectral literature, two major ap-
proaches to statistical background modeling can be distin-
guished. In the first approach, named “local”, the back-
ground is modeled by a large number of local independent
distributions, each of which is responsible to represent a dif-
ferent local region in the image. Local models can tightly
fit the background data, however they are subject to over-
fitting, which may produce an excessive number of false-
alarms. The second background modeling approach, denoted
“global”, is based on a global representation of the back-
ground process in the whole image. By design, this approach
is more resistant to overfitting. However, it has a limited
ability to adapt to all nuances of the background process (an
underfitting problem), which may result in high false alarm
rates, as well as low anomaly detection rates.

Obviously, there is no ultimate answer how to completely
avoid the overfitting or underfitting problems. However, one
may significantly improve detector performance by a proper
combination of the local and global background modeling
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principles. One way to accomplish this is to use local back-
ground models that are not independent, but are interrelated
in some way. This construction may help to significantly re-
duce the vast number of degrees of freedom of a set of local
models, while retaining the ability of local models to be in-
timately adjusted to the background. We call this approach
“local-global”.

In [1], we present an algorithm based on a “local-global”
statistical background modeling approach. The local model
in the proposed algorithm is composed of a small number of
distinct clusters, each one assumed to have a Gaussian dis-
tribution. This configuration helps to handle multiple types
of terrain but is subject to overfitting, which may lead to a
large number of false alarms. Thus, a global filter is then
applied to alleviate the overfitting problem. Each anomaly
pixel detected in the local part of the proposed algorithm is
compared to a “dictionary” where each “word” consists of
estimated local background cluster statistical parameters of a
larger image area. Only pixels that are determined as not be-
ing associated with any background clusters, are be declared
as true anomalies. This proposed “local-global” algorithm
was tested on real hyperspectral data and has shown better
performance than several examined local or global anomaly
detection algorithms in terms of Receiver Operation Charac-
teristic (ROC) curves.

The choice of the Gaussian model in [1] is due to its ef-
ficient processing and mathematical tractability. In fact, it
simplifies the derivation of decision rules and the evaluation
of detector performance. Unfortunately, the Gaussian model
is not sufficiently adequate to represent the statistical behav-
ior of a background cluster in real hyperspectral images. It
has been shown ([2], [3]) that the Gaussian model fails in
its representation of the distribution tails. In particular, dis-
tributions of hyperspectral data have heavier tails than the
Gaussian pdf. Since the Gaussian model underestimates the
distribution tails, it can lead to an excess number of false
alarms.

In this paper, we introduce a novel algorithm, de-
noted NG-BEVA (Non-Gaussian Background Extreme Value
Analysis). It is an anomaly detection algorithm that is
based on the combined local-global background modeling
approach, but without the Gaussian assumption.

2. PROPOSED ALGORITHM DESCRIPTION

2.1 Local background modeling

In the local part of NG-BEVA, the hyperspectral image is
partitioned into distinct local blocks. The background local
model used for each local block is capable of handling mul-
tiple types of terrain. It is composed of L distinct clusters
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(typically, up to 3),
xe€C, 1<k<L @)

Where x is a background pixel in the local block and Cy, the
k-th cluster of the L background clusters.

Each local block is first clustered using the Spectral Clus-
tering algorithm in [4]. Each obtained cluster is supposed to
be a background cluster “polluted” by some anomalies. We
estimate the statistics of the background cluster by using a
greedy iterative estimation process based on Extreme Value
Theory [7] results for the Gamma distribution, as detailed
below.

2.1.1 Spectral Clustering

In recent years, Spectral Clustering (SC) has become one of
the most popular modern clustering algorithms [5]. It is sim-
ple to implement, can be solved efficiently by standard linear
algebra software, does not assume cluster Gaussianity, and
very often outperforms traditional clustering algorithms such
as K-means [6]. In order to cluster a given dataset, Spectral
Clustering relies on the eigenstructure of an affinity matrix
W, where an element w;; represents a measure of the affinity
between the vectors i and j in the dataset.

An outline of the Spectral Clustering algorithm is shown
in Table 1.

In experiments with real hyperspectral data, we observed
that instead of selecting a single scaling parameter o, the
use of a local scaling parameter o; for each data point x;,
as proposed by Zelnik-Manor and Perona in [4], improves
greatly the clustering results.

Using a specific scaling parameter for each pixel allows
self-tuning of the pixel-to-pixel distances according to the
local statistics of the neighborhoods surrounding pixels i and
Jj. The affinity between two pixels is now given by

[P =113
wij = exp(—————= )
= exp(— )

The selection of the local scaling parameter o; is done by
studying the local statistics of the neighborhood of pixel x;:

o; = d(x;,xy) 3)

Le., the local scaling parameter o; is the Euclidian distance
from x; to its M’th nearest neighbor x);. The choice of M
is data dependent. A too small M will not represent well
the local statistics of the neighborhood of x;. On the other
hand, clustering using a too large M would be affected by the
presence of outliers (anomalies). For our data, M between 10
to 50 resulted in similar segmentation results.

2.1.2  Local background model estimation

By applying Spectral Clustering as described above, we get
for each local block L “coarse” clusters. The number of
“coarse” clusters L is a user-defined parameter. We assume
that each “coarse” cluster contains pixels of a background
cluster together with some possible anomalies. The back-
ground pixels have then to be discriminated from other pixels
so that the statistics of the background cluster could be reli-
ably estimated. To perform this task, we initialize for each

Table 1: Spectral Clustering Algorithm [5]

Inputs: N pixels, {x,}}, xn : p x 1, p - # of spectral bands,
L - Number of clusters, o - Scaling parameter

Algorithm: Perform the following steps:
1. Compute the Affinity Matrix W € RV*N ywhere

||xi —x;l13
0-2

)

wij = exp(—

2. Compute the Degree Matrix D to be the diagonal matrix with:

N
Dij =Y wij
j=1
3. Compute the Normalized Laplacian Affinity Matrix L,,:
L,=D WD ?
4. Solve the following eigenvalue problem:

L,v=Av

5. Find the eigenvectors corresponding to the L largest eigenval-
ues of Lyy:

V= {VI7V27'“ 7vL} GRNXL

6. Normalize the rows of V:

7. Treat each row \7, of V as a point in RL and cluster the N
rows via K-means (K=L).

8. Assign the original point x; to cluster c if and only if the
corresponding row i of the matrix V was assigned to cluster c.

Qutput: Each data point x; belongs to one of the L clusters.

cluster C of the L “coarse” clusters, two distinct indices sets
A2 =0 and BY. = {m|x,, € C} and aim to get

Bé = {Pixel indices of Background cluster C}
P “)
A = {Pixel indices of local Anomalies }

To remove the effect of outliers (local anomalies) on the
estimation of background clusters statistics, we propose an
iterative estimation process that combines robust mean and
covariance estimation [9] together with a background cluster
hypothesis test based on Extreme Value Theory results [7]
for the Gamma distribution [8], as described bellow.

The background hypothesis test determines which pixels
belong to a background cluster, and which are outliers in the
particular block. It is based on examining the Mahalanobis
distance d = (x — u)'X ! (x — u) from a realization x to the
mean of a background cluster, where  and ¥ are the first
and second moments of the distribution that approximates
this background cluster, and ¢ denotes “transpose”.

Let 1 = max;—; ... y(d;) be, the maximum Mahalanobis
distance over the N data-vector indices of the*“coarse” cluster
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C, obtained at index 8. Given 1 and &, we formulate the
following hypotheses:

Hy : 0 belongs to Bé

’ (5)
H : 0 belongs to A,

Denoting v = max._,s(d;) and & = max_, s (d;), as the

ieB. icAl.
maximum Mahalanobis distance in subset Ag and subset Bg,
respectively, 11 can be expressed as:

1N =max(v,§) (6)

In order to evaluate the conditional probabilities P(Hy|n)
and P(H;|n), one has to specify pdfs fy(-) and f¢(-), or,
equivalently, cdfs Fy () and Fg ().

In [1], each background cluster was approximated by a
unimodal Gaussian pdf N(u,X) with u and X being the mean
and covariance, respectively. For larger values of N, the Ma-
halanobis distances can be approximated by a Chi-squared
distribution of order p, denoted by x?(p), where p is equal
to the number of spectral bands.

In the proposed NG-BEVA, we assume that the Maha-
lanobis distances have a Gamma distribution instead of a
Chi-squared distribution. The Gamma distribution I'(k, ®) is
a two-parameter distribution. Its pdf has the following form:

1 1 -
k 16 u/®

flu)= (k)"

with ©u >0 )

where © is the scale parameter and & the shape parameter.

By using the Gamma distribution, we have relaxed the
Gaussian model constraint. The Gamma distribution is more
general than the Chi-squared distribution. In fact, the Chi-
squared distribution x?(p) is a special case of the Gamma
distribution I'(k, ®), obtained for k = § and @ = 2.

Given the pdf and cdf of the Gamma distribution, the con-
ditional hypotheses probabilities are given by [8]:

B nfo(n)
PlHo) = o)+ B ®
Fy(n)
= R @

where f, and F, are the pdf and cdf, respectively, of the
Gamma distribution with estimated max-likelihood parame-
ters k and ©.

Fig. 1 shows the two conditional hypothesis probabilities
obtained for N = 10,000 pixels of p = 65 spectral bands and
a Gamma distribution with £k = 25 and ® = 2.5. Theses val-
ues are close to the values one obtains for real hyperspectral
data.

The crossing point 7 of the two hypotheses, i.e., the Ma-
halanobis distance above which P(Hy|n) < P(H}|n), can be
used as a threshold to isolate the background cluster real-
izations from other realizations in the data-set. A data pixel
having a Mahalanobis distance that is below 7, will be de-
clared as a background cluster pixel. The transition region
between hypotheses is steep and narrow. Actually, its width
is inversely proportional to the number of spectral bands p
and to the square of N, the number of pixels.

The iterative estimation process that combines Robust
statistics estimation with the background hypothesis test is
described in detail in Table 2.
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Figure 1: Conditional hypotheses probabilities P(Hy|n) and
P(H;|n) obtained for N = 10,000 pixels of p = 65 spectral bands.
Gamma distribution parameters used are k = 25 and ® = 2.5.

Table 2: NG BEVA - Background Parameter Estimation
Inputs: In = {m|x,, € C}, x,n : [p x 1], p - # of spectral bands

Initialization: A2 =0, B2 =In, 0° =1,
do=(/P+V2)* y=125andi=0

Main Iteration: Perform the following steps:
1. Robust estimation of Mean and Covariance [9] :

)
i meGB’C WppXm
He= " 7

meeB’C wrin
i ZXmGBiC(wrin)z(xlrl - :u-ic)t(xm - IJZC)
‘ T, cn (@5)7 — 1

2. Calculation of Mahalanobis distances in BiC :

Vxm € Be: d = (xm — Né‘)t(zé‘)il()‘m —ue)

3. Update weights [9]:

wi+1 _ 1 lf dm S dO
m 9 exp(—0.5(dm —do)?/V?)  if dm > do

4. Gamma Distribution Fitting using the estimated Maximum
Likelihood parameters:

Vxm € B : dyy — T(ki-, OL)

5. Update sets: '

Find data pixel indices {6’} having Mahalanobis distances
that exceed the background cluster hypothesis threshold value T,
which is a function of p, |B‘C|,Z’C,IAc‘C and (:)’C:

{6y = {I(d,, > ©')} where I = Indexof value
B = BLA(8'}
AL =AU}

6. Stopping rule:
If {0} =0, stop. Otherwise, increment i and go to 1.

Putput:A .AJCC = AL, Bé = B, Iié = ug, Zé = I, ’A‘cf* =
k. and O] = 6.
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2.2 Global Filtering

The proposed algorithm for local background estimation al-
lows the use of several background cluster pdfs to accurately
represent the wealth of the local background spectrum. How-
ever, the many degrees of freedom in the parameter selection
can lead to a high false-alarms rate stemming from overfit-
ting.

As in our work in [1], we apply a global filtering ap-
proach, which reduces the number of degrees of freedom by
inter-relating the obtained local background pdfs. Given a lo-
cal block, having A as the subset of indices of local anomaly
pixels in it, we consider a larger image area composed of T
blocks around it. All the local anomaly pixels whose indices
are in A are compared to the T relevant local background
models (each consisting of up to 3 clusters). For every lo-
cal anomaly pixel {x,|m € A}, we find the minimum Ma-
halanobis distance from it to all the clusters centroids of the
T backgrounds, d,,, = min; j{(x, — ,ui_’j)’(Zi,j)_l (Xm — 1 )}
where i = 1,---,T and j runs over the number of clusters
in block i. If the minimum Mahalanobis distance is smaller
than the background hypothesis threshold value of the cluster
in which the minimum was found, the index is removed from
A. At the end, A contains just the indices of global anomaly
pixels present in the examined local block.

By combining local blocks, we have obtained a global
background model composed of several local background
clusters. In other words, pixels are compared to a “dictio-
nary” where each “word” consists of estimated local back-
ground cluster statistical parameters. A pixel is declared as
an anomaly if it does not fit well any “word” in the “dic-
tionary”. Additional words, based on global learning (or
even supervised learning) of the background clusters, can be
added to the “dictionary” to improve its performances.

Table 3 presents a formal description of the global filter.

Table 3: Global Filter
Task: Reduce the number of false alarms in a given local block.

Input: Subset A of indices of local anomaly pixels in the given
local block.

Loop: For each {x,,|m € A}
1. Calculate the minimal Mahalanobis distance to the centroids
of the L; background clusters over the blocksi=1,---,T:

dm = min ji{ (xm —.Ui,j)t(zi,j)il(xm M )b J=10L

2. Update A:

Compare d,, to 7, the crossing point of the two conditional
hypotheses (eq. (9)) corresponding to the closest background
cluster:

If dny <7

Then A=A\{m}

Output: A contains just the indices of global anomaly pixels
present in the examined local block.

3. PERFORMANCE EVALUATION

In this section we evaluate the performance of NG-BEVA by
applying it to real hyperspectral data. To demonstrate the re-

sults, the algorithm was applied to 5 real hyperspectral image
cubes collected by an AISA airborne sensor configured to 65
spectral bands, uniformly covering VNIR range of 400nm -
1000nm wavelengths. At 4 km altitude pixel resolution cor-
responds to (0.8m)? . The total covered area of the 5 cubes is
approximately 1.2km?. For the experiment, each image was
divided into non-overlapping local blocks of size 35 x 35.
Each block was partitioned into 3 clusters and the local scal-
ing parameter o; was obtained with M set to 20 . The global
filter is applied to each local anomaly found, using a larger
image area of size 350 x 350.

In Fig. 2, one can see the ground-truth anomalies on a hy-
perspectral image (marked in red and encircled by ellipses),
which were manually identified using high resolution CCD
images of the corresponding scenes. In Fig. 3, we show
the CCD image corresponding to the hyperspectral image
in Fig. 2, which was used for identifying the ground-truth
anomalies. The ground truth anomalies consist of vehicles
and small agriculture facilities, which occupy few-pixel seg-
ments.

Figure 2: Manually identified ground-truth anomalies, marked
in red and encircled by ellipses.

Figure 3: High resolution CCD image of the analyzed scene,
used as a ground-truth indication. The ground-truth anomalies are
encircled by red ellipses.

In Fig. 4, we compare NG-BEVA to the algorithm pro-
posed in [1], RX [10], GMM-RX [11] and FastMCD [12],
in terms of Receiver Operation Characteristic (ROC) curves.
For the purpose of ROC curves generation, all hyperspec-
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tral images were used, having a total number of 50 anoma-
lies. An anomaly is considered as detected if at least one of
the detected pixels hits the corresponding marked segment.
All pixels detected by the algorithms were grouped into con-
nected objects using 8-connected object labeling. If an ob-
ject doesn’t intersect a marked (ground truth) anomaly, it is
considered a false alarm object. This kind of anomaly de-
tection/miss criteria is particularly suitable for applications
that aim to alert the user on all anomalies of all sizes. There-
fore, it is more important to detect at least one pixel on each
anomaly, rather than many pixels on only some of the anoma-
lies.

Clearly, the proposed approach has a better performance
than the other examined algorithms. The time of compu-
tation of NG-BEVA is slightly higher than BEVA, twice
smaller than RX and larger than GMM-RX or FastMCD by
a factor of six.
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Figure 4: ROC curves corresponding to NG-BEVA, RX, GMM-
RX, FastMCD and the algorithm proposed in [1].

4. CONCLUSION

In this work we presented an anomaly detection algorithm,
denoted NG-BEVA, based on a local-global statistical back-
ground modeling approach that helps to significantly reduce
the vast number of degrees of freedom of the local method,
while retaining the ability of local models to intimately adjust
to the background. The Gaussian model, although efficient
and mathematically tractable, is not sufficiently adequate to
represent real hyperspectral data. Thus, no Gaussianity as-
sumption is made on the background cluster model in NG-
BEVA.

In the local part of NG-BEVA, the hyperspectral image is
partitioned into distinct local blocks. The data of each block
is clustered into a fixed number of “coarse” clusters using
Spectral Clustering, a non-Gaussian clustering method. (An
adaptive selection of the number of clusters for each local
block may be a subject for future research). Then, the lo-
cal background is modeled using a greedy iterative estima-
tion process that applies background cluster hypothesis test-
ing based on extreme value theory results. The Mahalanobis
distances of the background cluster pixels to the cluster cen-

troid are assumed to have a Gamma distribution instead of a
Chi-squared distribution used in the Gaussian case. Thus, by
fitting a Gamma distribution to the Mahalanobis distances,
we relaxed the Gaussianity assumption. Then, in the global
part, the number of false alarms is reduced by comparing the
found local anomalies to a “dictionary” of background local
models in a large image area. Local anomalies that are too
close to a background cluster centroid in any other block, are
eliminated.

In experiments with real hyperspectral image cubes the
proposed algorithm was shown to have a better performance
than RX [10], GMM-RX [11], FastMCD [12] and the algo-
rithm proposed in [1].
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