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ABSTRACT

Acoustic vector sensor (AVS) signal measures acoustic
pressure as well as particle velocity, and therefore con-
tains both the azimuth and the elevation information of
the source. Existing 2-D DOA estimation methods for
AVS assume that the source is static and extensively rely
on the localization techniques. In this paper, a particle
filtering (PF) approach is developed to track the 2-D
DOA by using a single AVS. A constant velocity model
is employed to model the source dynamics and the like-
lihood function is derived based on maximum likelihood
estimation of the source amplitude and the noise vari-
ance. Since the likelihood function is usually spread and
distorted in the heavy noisy environment, it is further
exponentially weighted to enhance the weight of parti-
cles at high likelihood area. Simulations show that the
proposed algorithm significantly outperforms the tradi-
tional Capon beamforming method and is able to lock
on the DOA of the source in challenging environments.

1. INTRODUCTION

Localizing the 2-D (azimuth and elevation) direction of
arrival (DOA) of an acoustic source in a noisy environ-
ment plays an important role in many applications such
as speech, seismology, sonar and radar. It is usually
achieved by using arrays with several pressure sensors,
together with estimation techniques based on the col-
lected pressure measurements [1]. Acoustic vector sen-
sor is a new technology developed in the recent past to
measure the acoustic pressure as well as three compo-
nents (z—, y— and z— coordinates) of the particle veloc-
ity [2]. Compared to the traditional pressure sensor, it
produces additional information that enables 2-D DOA
estimation unambiguously with a single vector sensor.
Theoretical aspects and practical applications of
AVS have been extensively studied [2,3]. DOA esti-
mation using a single AVS and corresponding perfor-
mance study are investigated in [3-5]. However, these
analysis are based on the localization techniques such as
beamforming and MUSIC [3, 6], in which the source is
assumed to be static and only spatial information from
current measurements are employed. In real applica-
tions, the sources (e.g., submarines or robots) are in fact
dynamic and moving smoothly. The DOAs are highly
correlated within adjacent time steps. Hence, it is de-
sired to exploit the information from both the previous
DOA estimates and the current measurements to local-
ize the source. DOA estimation via tracking is such an
approach where previous estimates can be fed back into
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the system for subsequent estimations. Among all track-
ing approaches, particle filtering (PF) [7] is found effec-
tive in coping with nonlinear and non-Gaussian system
models and has been successfully used for underwater
acoustic source tracking problem [8,9].

In this paper, a PF is formulated to track the 2-
D DOA of an acoustic source using an AVS. Since the
movement of the underwater source can be assumed to
be smooth, the constant velocity (CV) model [10] is used
to model the source dynamics. The measurement equa-
tion is the AVS data model which is nonlinear function of
the source state. The source amplitude and the variance
of measurement noise process are unknown in practice.
These parameters are thus estimated by using a max-
imum likelihood estimator. The likelihood of particles
are then derived. Since the mainlobe of the spectra is
spread by low signal-to-noise (SNR) environment, the
likelihood function is further exponentially weighted to
generate a sharper peak and to emphasize the particles
sampled at high likelihood area. Due to a sample-based
representation of the posterior probability density func-
tion (PDF) of the state vector, PF is well suited for
DOA estimation based on the nonlinear measurement
equation. The key advantage of the proposed tracking
algorithm is its ability to estimate the DOA accurately
and efficiently when the source motion is unknown a
priori in a low SNR environment.

The rest of this paper is organized as follows. In Sec-
tion 2, the AVS signal model and Capon beamforming
method are introduced. Section 3 presents the source
motion and likelihood models. The enhanced likelihood
model and the tracking algorithm are also formulated.
Simulated experiments are organized in Section 4 and
conclusions are drawn in Section 5.

2. AVS SIGNAL MODEL AND CAPON
BEAMFORMING

Consider a narrow band acoustic source s(t), with a cen-
ter frequency fy, impinging on an AVS. The source emits
signal at a 2-D direction given by

0; = [pr, VT, (1)

where ¢; € (0, 27| and ¢y € [—7/2, 7/2] denotes the
azimuth and the elevation respectively, and ¢ is the time
instance.

Let v(r,t) denote the particle velocity of acoustic
wave at a position 7 , and p(r,t) be the acoustic pres-
sure. Here v(r,t),r € R3, and p(r,t) € R. The rela-
tionship between the acoustic pressure and the particle
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velocity is given by [2],

o(r,t) = —p(r, t)u:/(poc), (2)

where pg is the ambient pressure, and c is the propaga-
tion speed of the acoustic wave in the medium. wu; is
the unit direction given by

Uy = [COS 1y COS Py, COS Py SIN Py, Sin m}T , (3)

where the superscript 1" denotes the matrix transpose.

Further assume that a single AVS is located at r,
which is known and is fixed during all time steps. The
acoustic pressure and particle velocity will only depend
on the time ¢. Using the phasor representation, the plan
wave signal model can be written as

}6_j27rf(,ns(t)+ [ 0, (1) } . (@)

v =| 1 nll

T hoctt

where s(t) € C is the complex pressure envelope of the
source signal, and n,(t) € C and n,(t) € C3*! represent
the corresponding pressure and velocity noise terms re-
spectively. 73 is the time delay of the plane wave from
the source to the sensor, i.e., 7 = —rTut/c. For a tar-
get which moves relatively slow, the DOA 6; can be
assumed to be stable if a small number of snapshots are
processed at each time step. Assume that N snapshots
are taken into account at time step k, and let

s(k) =[s(kN +1),...,s(kN + N)], (5)

denote the snapshots of the source signal (s(k) € C1*V).
The noise and received data can be written as

(k) = (kN +1),....n(kN + N)|;  (6)
(k) = [y(kN +1),....y(kN+N)],  (7)

where N(k),Y(k) € C*>*N. Accordingly, ) is used to
express the DOA at time step k. Equation (4) can thus
be written as

Y (k) = a(6x) @ s(k) + N(k), (8)

N
Y

where ]
a(0x) = e h(6)), 9)

is the steer vector with h(8x) = [1,—u] /(poc)]” de-
noting the AVS response at coordinate origin, and ®
denotes the Kronecker product. The received signal in-
cludes both the the azimuth and elevation information,
and can be used for 2-D DOA estimation.

The noise term N (k) in (8) is assumed to be indepen-
dent identically distributed (i.i.d.) zero-mean complex
circular Gaussian processes and are independent from
different channels. Also the source signal s(k) and the
noise N(k) are uncorrelated. The PDF of the measure-
ments can be written as

Y (k) ~CN(-|a(0r) @ s(k),T), (10)

where CN(-|u,X) represents a multivariate complex
Gaussian distribution with mean p and covariance ma-
trix 3. The covariance matrix IT'y, is given as

o? 0
— p
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Figure 1: Response of the Capon beamforming under
the environments (a) SNR = 10dB; (b) SNR = —10dB.
The source signal is located at (—44.4°, — 14.4°). The
estimated DOA is labeled at the top of each figure.

where I,,, is an mth order identity matrix, and 012, and

02 are the noise variances for the pressure and velocity
components respectively. The Capon spectra estimation
for signal model given in (8) is computed according to [3]

Pr(0) = {a" (0)R; "a(0)} ", (12)

where the superscript H denotes the conjugate transpo-
sition and Ry, is the covariance matrix given as,

Ry = E{Y (k)Y (k)""}
= a(6;)Pra’ (6;) + Ty, (13)

with E{-} denoting the expectation operation. The
DOA estimation can easily be obtained by implement-
ing a 2-D search over the potential 8 which maximizes
the output of Capon beamformer, stated as

) = arg max |Pr(0)] . (14)
Oc(—7 =]x[-7/2 = /2]
where | - | denotes the amplitude of a complex value.

Capon beamformer is widely used for DOA estimation
due to its simplicity and efficiency in suppressing the
effect of noise. In noisy environments where the signal
to noise ratio (SNR) is relatively high, Capon spectra
is able to present the source DOA by a sharp peak as
shown in Fig.1(a). However, when the SNR is low, the
peak may be distorted and the estimated DOA may be
far away from the ground truth, as shown in Fig. 1(b).

3. DOA ESTIMATION VIA PARTICLE
FILTERING

To formulate the general framework for DOA tracking
problem, the state-space model has to be defined first.
Consider that a source is currently at DOA 6, and mov-
ing with a velocity @, (in rad/s). The source state xj,
can thus be constructed by the DOA 6, and the motion
velocity Oy, i.e., x;, = [0),0;]". The CV model [10] is
used here to model the source dynamics, given as

Xr = Axj_1 + Bvy, (15)

where the coefficient matrix A and B are defined by

I, AT } B [ AT? /21, } . 6)

A:{ 0 L AT,
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with AT representing the time period in seconds be-
tween the previous and current time step, and v(k) is a
zero-mean real Gaussian process (i.e., v(k) ~ N(0, Xy)
with 3 = diag(ai, ai)) used to model the turbulence
on the source velocity. Here diag(C') represents a diag-
onal matrix with main diagonal entry C.

A natural choice for the measurement function is the
AVS data model given in (8). Let Y1., = {Y1,..., Yi}
denote all the measurements obtained up to time step
k. The task here is to estimate the posterior p(xx|Y1.x)
recursively. The solution based on Bayesian recursive
estimation towards to this problem can be given as

e Predict:

P(xp|Yip—1) = /p(Xk|Xk71)p(Xk71|Y1:k71)dxk71;

(17)
e Update:

(x| Yi:r) o< p(Yi|xe)p(xk] Yik—1). (18)

In this recursion, p(xx_1|Y1.x—1) is the posterior distri-
bution estimated at the last time step, and p(xx|Y1.5-1)
is the prior distribution for the current time step. The
Bayesian recursion states that given the posterior dis-
tribution of the state estimated at the previous time
step kK — 1 and system models, the current probability
distribution of the state can be obtained recursively. Al-
though Kalman filter can be used to solve the Bayesian
recursion in (17) and (18), its usage is limited in the
case of linear and Gaussian system models. Here, the
PF that provides an excellent solution to the nonlinear
problem is employed [7]. Given the state particles x,(fzp
for ¢ =1,...,L at previous time step k — 1, the transi-

tion density p(x,(f) |x](f31) is given by the source dynamic
model (15), that is

Y4 I I ¢
pxVx ) = Nx |Ax? | B BT).  (19)

The particles are thus sampled based on the prior impor-
tance function which is determined by the above source
dynamic model. Under such a sampling scheme, the
particles are weighted according to the likelihood of each
particle, given as

¢ (¢ ¢
wi? = p(Yilx), (20)
where IT],(CZ_)I is the normalized weight at the last time

step. The task here is thus deriving the likelihood ac-
cording to the AVS data model (8). Since the mea-
surement noise process is assumed to be Gaussian, the
likelihood function can be written as

L(Y[x) =(det 7T) !
exp{—Tr([Y (k) — a(Cx\") @ s(k)] ¥
T [Y (k) —a(Cxy)) @ s} (21)

where C = [1 0] such that Cxy, outputs the DOA part of
the state, and det(-) denotes the determinant, and Tr(-)
represents the trace operation. Since the source signal
s(k) and the variance matrix I';, of measurement noise

processes are unknown in practice, they are estimated
by using a maximum likelihood estimator. The analytic
solutions are obtained by solving the gradient equations
Ol L(Yx|x\")/0s(k) = 0 and dIn L(Y|x\”)/0T% = 0
respectively. For brevity, we only present the results as
follows

. af (Cx\") Yy
sy = — 2 (Ve (22
afl (Cx,; ")a(Cx;’)
B a(Cxl(f) yaH (Cxl(f) Ry
(k) = Re - @ @ (23)
afl (Cx; )a(Cxy”’)

Inserting the maximum likelihood estimation §(k) and

I'(k) back into the equation (21), the likelihood for the
interested parameters can be addressed as

PY i) =

1 a(Cx)afl (Cx) -
(=) {det <I " aroxaenn) ) Y
(24)

Due to low SNR noisy environment, the mainlobe
of the likelihood function is usually spread and spuri-
ous peaks may appear. the likelihood function (24) is
normalized and exponentially weighted as

PY %))

maxng) f)(Yk ‘X,(f))

p(Yilx)) = (25)

with 7 € RT. After this weighting, the likelihood func-
tion is reshaped to enhance the weight of particles sam-
pled at high likelihood area. This step is very impor-
tant since it is able to help the subsequent resampling
algorithm to select and replicate the particles more effi-
ciently. Given the transition and likelihood models de-
rived above, the PF algorithm for AVS source tracking
is described in Algorithm 1. Since the initial DOA is
unknown, the particles for the DOA state are initialized
as a uniform distribution over the possible DOA range,
given as

6 ~Uy[—7, 7] x Uy[-7/2, /2], (26)

where Uya, b] is a uniform distribution over the possible
range [a, b] for variable d. The velocity part of the state

¢
0(()) are initialized as a Gaussian distribution with the

covariance matrix ¥ around the actual velocity vy, i.e.,

H(0)
00 ~ ./\/‘(‘|V07 20)

The PF algorithm described in Algorithm 1 is devel-
oped for narrowband acoustic source tracking. However,
its extension to wideband acoustic source tracking sce-
narios is straightforward. The likelihood model of wide-
band acoustic signal is a production of the likelihood of
each frequency component as described in (21). Con-

sequently, the likelihood of particles p(Yk\x,(f)) can be
obtained by taking the production of the likelihood over
all frequencies in (24).
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Algorithm 1: PF for AVS 2-D DOA tracking.

Initialisation: for £ =1,..., L, draw particles
0y ~ul-r, ] x U[-7/2, /2;

5 (0)

0y ~ N(|vo,X0);

set the initial weight u?((f) =1/L;

for k<1 to K do

for / <+ 1to L do

- draw particles Ol(f) according to (19);
- compute the likelihood ﬁ(Y;g|x§f)) from
—( 2(jg£npute the enhanced likelihood
p(Yk|x,(f)) according to (25);
- compute the importance weight:

wi = a2 p(Yulx);

end

normalise the weight: H),(f> = w,(f) / 25:1 w,(f);
resample the particles according to the
high/low weights;

output the estimates 6, = Z[L:l u?,g)Cx,(f).
end

4. SIMULATION EXPERIMENTS

A single AVS located at the origin is used as the receiver,
i.e., » = [0,0,0]7. The source signal is generated by a
complex sinusoid with the frequency of 50Hz. The sam-
pling frequency is 1kHz. The source starts from time
step 1 to 50, with the corresponding DOA (—90°, —60°)
and (30°,60°) respectively. The source is thus moving
with a velocity of 2°/sec. roughly along both the az-
imuth and elevation directions. The background noise
level is evaluated by SNR, and is simulated by adding
the white Gaussian noise (WGN) into the received sig-
nal. The tracking performance of proposed PF tracking
approach is compared with that of Capon beamforming
method. The Capon spectra is estimated from 100 x 100
grids in the 2-D DOA space. The parameters for PF are
set as: vo = [0.01 0.01]7, 2y = diag(4 x 10™*,4 x 107%),
and O'i = ai = 4 x 10~%. The number of particles is
L = 1000 and exponential weight r = 10. This parame-
ter setup is found adequate for all following experiments.

Figure 2 presents the DOA estimation by using
Capon beamforming and proposed PF tracking ap-
proach under different experiment environments: 1)
SNR = —10dB, N = 1024; and 2) SNR = —6dB,
N = 32. Capon beamforming degrades sharply when
the SNR is low and the number of snapshots is small:
at a number of time steps, the DOA estimates are far
from the ground truth. However, PF is able to incor-
porate the temporal information (from the source dy-
namic model) as well as the spatial information (from
the current measurements), and is thus able locate the
source consistently. It always locks on to the source
and presents a satisfactory DOA estimation. In addi-
tion, although the initial DOA is unknown for PF and
is assumed to be uniformly distributed, the PF tracking
approach is able to converge to the ground truth very
quickly.
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Figure 2: 2-D DOA estimation under different experi-
ment environments. (a) azimuth estimation and (b) el-
evation estimation under SNR = —10dB, N = 1024; (c)
azimuth estimation and (d) elevation estimation under
SNR = —6dB, N = 32.

To fully evaluate the tracking performance, experi-
ments under different number of snapshots and different
simulated noisy environments (different SNRs) are or-
ganized. The root mean square error (RMSE) and the
probability of correct estimate (PROC) over 50 Monte
Carlo simulations are used to evaluate the DOA esti-
mation performance. An estimate is regarded as a cor-
rect estimate if the absolute error is less than 2°, and
PROC is defined as the percentage of correct estimates.
Fig. 3(a) and (b) present the RMSE and PROC ver-
sus different SNR under different number of snapshots
respectively. Different SNRs from —10dB to 0dB with
an increment of 2dB are employed to generate noisy en-
vironments. The number of snapshots used here are
N = [32,256,1024]. Due to incorporating the temporal
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Figure 3: (a) RMSE in dB and (b) PROC in percentage
vs. different SNR and different number of snapshots.

information, the proposed PF tracking algorithm per-
forms better than Capon localization method in esti-
mating the DOA, and fewer snapshots are needed to
achieve a similar accuracy. A remarkable advantage of
the PF tracking algorithm is its ability to alleviate the
effect of noise and keep locking on the source DOA, even
in a very low SNR environment (e.g., SNR = —10dB).
In the scenarios where limited snapshots are available
(e.g., N = 32), the RMSE can be significantly reduced
by using the proposed PF tracking approach.

It is worth mentioning that the proposed PF algo-
rithm is also suitable for real-time online implementa-
tion. The computation complexity is obviously reduced
compared to the DOA estimation using Capon beam-
forming. In the above experiments, the 2-D DOA space
is split into 100 x 100 grids to implement the 2-D search
of Capon beamforming (14). The calculation of the
Capon response is thus 1.0 x 104 times. However, if 1000
particles are used in PF tracking algorithm, it is only
necessary to calculate the likelihood function 1.0 x 103
times. Besides, there is no matrix inverse operation in
the likelihood evaluation as required in Capon response
calculation.

5. CONCLUSIONS

A new approach for 2-D DOA tracking of an acous-
tic source using a single AVS is presented. A CV
model is employed to model the source dynamics and
the AVS data based likelihood model is developed to

weight the particles. The likelihood is further exponen-
tially weighted to enhance the weight of particles at high
likelihood area. By incorporating both the temporal
and spatial information, the proposed PF tracking algo-
rithm significantly outperforms the traditional Capon
beamforming method in 2-D DOA estimation, and is
also able to achieve better accuracy in the adverse envi-
ronments with fewer snapshots. However, only a single
acoustic source and a single AVS is considered in this
paper. Hence, future work includes developing a PF al-
gorithm to track multiple acoustic source using a single
AVS as well as an AVS array.
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