
MODEL-BASED PRECISION ANALYSIS AND OPTIMIZATION FOR DIGITAL
SIGNAL PROCESSORS

Soujanya Kedilaya1, William Plishker2, Aleksandar Purkovic1, Brian Johnson1,
and Shuvra S. Bhattacharyya2

1Texas Instruments
Germantown, MD 20874, USA

{kedilaya, apurkovic, bfjohnson}@ti.com

2University of Maryland
College Park, MD 20742, USA
{plishker, ssb}@umd.edu

ABSTRACT

Embedded signal processing has witnessed explosive growth in re-
cent years in both scientific and consumer applications, driving the
need for complex, high-performance signal processing systems that
are largely application driven. In order to efficiently implement
these systems on programmable platforms such as digital signal
processors (DSPs), it is important to analyze and optimize the ap-
plication design from early stages of the design process. A key per-
formance concern for designers is choosing the data format. In this
work, we propose a systematic and efficient design flow involving
model-based design to analyze application data sets and precision
requirements.

We demonstrate this design flow with an exploration study into
the required precision for eigenvalue decomposition (EVD) using
the Jacobi algorithm. We demonstrate that with a high degree of
structured analysis and automation, we are able to analyze the data
set to derive an efficient data format, and optimize important parts
of the algorithm with respect to precision.

1. INTRODUCTION

With the increased need for the design and development of complex
signal processing systems in scientific fields such as wireless com-
munications, medical imaging, and high energy physics, which deal
with large unpredictable data sets, a key design decision to make
for efficient implementation is the choice of data format. In gen-
eral, floating point digital signal processors (DSPs) achieve much
greater precision and dynamic range at the expense of speed, since
they require multiple cycles for each operation. On the other hand,
fixed-point DSPs are favored for high-volume applications where
unit manufacturing costs need to be kept low. But with the evolu-
tion of semiconductor technology, cost issues relating to size of the
DSP core are no longer as significant. Overall, fixed-point DSPs
still have an edge in cost and floating-point DSPs in ease of use, but
the gap has narrowed to the point where the choice of using a fixed-
or floating-point data format comes down to whether floating-point
math is needed by the application data set [1].

With new Texas Instruments (TI) DSPs such as the
TMS320C674x series supporting a superset of both fixed- and
floating-point instruction sets, it has become possible to implement
an application in fixed-point with only a subset of instructions re-
quiring higher precision in floating-point. The challenge arises in
identifying the precision bottlenecks in any given application in a
systematic and highly automated manner.

In this work, we propose and demonstrate a methodology using
model-based design for the analysis and optimized application of
data precision in a signal processing system. Model-based design
has proven to be an effective and efficient method for designing sig-
nal processing systems (e.g., see [2]). Predominantly model-based
design is used to link designs directly to requirements, integrate
testing with design, help isolate domain experts from the need to
understand low-level hardware and software details, and use a com-
mon design abstraction across project teams. Additionally, model-
based design is also effective for application exploration. In such

exploration, a designer typically starts with a platform-independent
description of the application. This structured, formal application
description is a useful starting point for capturing concurrency and
optimizing and analyzing the application.

The Dataflow Interchange Format (DIF) [3] provides one such
tool for model-based design and implementation of signal process-
ing systems. The DIF environment employs the methodology of
dataflow-based application modeling. DIF allows for high-level ap-
plication specification, software simulation, and synthesis for hard-
ware or software implementation.

Dataflow modeling has often been used in precision analysis,
most commonly in automatic floating-to-fixed-point conversion of
DSP code. Since high level languages such as C do not have built-
in fixed-point datatypes, it is common practice to develop DSP al-
gorithms with floating point datatypes, and then implement them
on fixed point architectures. Since the manual transformation of
floating-point data to fixed-point data is time consuming and er-
ror prone, a significant volume of research has been focused on
the automatic conversion of floating-point to fixed-point code (e.g.,
see [4, 5]). Some of these research works, such as those reported
in [4, 6, 7], employ fine-grained dataflow graphs as an intermediate
representation between the floating- and fixed-point programs. In
this kind of intermediate representation, the dataflow graph has ver-
tices representing relatively low level (“fine grained”) operations,
and the edges represent data variables. Using such a dataflow graph
as the backbone, several statistical and/or analytical methods are
applied at every node to compute and annotate vertices with their
respective dynamic ranges, binary point positions, and ultimately,
bit widths.

We adopt some of these methods for precision analysis and op-
timization. However, in most of these works, the starting point
is not a high level application specification, instead it is floating
point code for the targeted algorithm. The dataflow graph is a fine-
grained, general purpose intermediate representation rather than a
high-level representation that is in terms of coarse grain building
blocks (e.g., digital filters and FFT modules) and formal dataflow
models, such as synchronous or cyclo-static dataflow [8, 9]. Al-
though fine-grained, general purpose representations are suitable for
converting floating point code to fixed point code, they do not ex-
pose high level application structure effectively as formal models
do, and therefore are significantly limited in terms of their capa-
bilities to support high-level, cross-module application analysis and
design exploration [2].

The DSPCAD Integrative Command Line Environment
(DICE) [10] is a framework for facilitating efficient management
of design and test of cross-platform software projects. DICE
includes features, such as stream-oriented and dataflow module
testing support, that are well suited for DSP applications. Although
DIF and DICE are orthogonal (one can be employed without the
other), there are useful synergies between the two tools, such as
improving FPGA design processes for high performance signal
processing [11].

In this work, we use DICE as a framework to simulate a DSP
system that is modeled in DIF, and to evaluate component inter-

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 506

actions and system-level metrics for this system. We demonstrate
that this approach leads to an efficient methodology for precision
analysis of DSP computations. We demonstrate this methodology
with an exploration into the internal precision of computation for
Jacobi Eigenvalue Decomposition (EVD) [12]. In this analysis, the
mathematically intensive Jacobi EVD is modeled as a mixed-grain
dataflow graph in DIF. We exploit the synergy between DIF and
DICE when evaluating the precision requirements of the different
operations. Based on this analysis, we are able to identify parts of
the application that require higher precision, optimize these parts,
and provide useful feedback to designers about the formulation of
the algorithm. The approach provides a structured, highly auto-
mated solution to precision analysis problems, which helps to im-
prove the quality of the derived precision configurations, and the
efficiency and reliability of their derivation.

2. DATAFLOW MODELING

Modeling DSP applications through coarse-grain dataflow graphs is
widespread in the DSP design community, and a variety of dataflow
models have been developed for dataflow-based design. A growing
set of DSP design tools support such dataflow semantics. Designers
are expected to be able to find a match between their application
and one of the well-studied models, including cyclo-static dataflow
(CSDF), synchronous dataflow (SDF) [8], single-rate dataflow, ho-
mogeneous synchronous dataflow (HSDF), or a more complicated
model such as boolean dataflow (BDF) [13].

Common to each of these modeling paradigms is the represen-
tation of computational behavior as a dataflow graph. A dataflow
graph G is an ordered pair (V,E), where V is a set of vertices
(or nodes), and E is a set of directed edges. A directed edge
e = (v1,v2) ∈ E is an ordered pair of a source vertex v1 ∈ V and a
sink vertex v2 ∈ V . Vertices (actors) represent computations while
edges represent FIFO communication links between actors.

3. MODEL-BASED PRECISION ANALYSIS

3.1 High-level Application Specification
System development often involves an initial application descrip-
tion in a design environment, which is then transcoded and tuned
to target the implementation platform. We use DIF as our dataflow
analysis engine and as our model-based development environment.
The functionality of the actors in the application graph is imple-
mented using functional DIF, which is a plug-in to the DIF package
that provides functional simulation capabilities for signal process-
ing systems that are represented as dataflow graphs [14].

3.2 Proposed Methodology — Dynamic Range Analysis
The required precision for any data variable can be computed by
estimating the required integer wordlength (iwl) and the required
fractional wordlength (fwl). There exist both analytical and statis-
tical methods to determine these wordlengths [15]. In general, iwl
is estimated by computing the dynamic range of the data variable.
In this work, we focus on the analysis of the dynamic range of dif-
ferent data variables. We extrapolate the information obtained from
the computed dynamic ranges to understand the precision required
in both the integer and fractional parts of the data representation.

Data dynamic range can be computed through floating point
simulation of the application and statistical estimation of the data
variable ranges. This gives a more accurate estimate, but since it
is simulation-based, some possible cases can be overlooked leading
to overflow problems. The second method is an analytical approach
where the dynamic range of a particular output variable is expressed
in terms of dynamic ranges of the inputs to that variable. In this
method, dataflow modeling is useful for dynamic range analysis.
This method guarantees the prevention of overflow, but is a worst-
case estimate, thereby being more conservative. We adopt the latter
approach so that all possible cases are taken into account.

Interval arithmetic theory [16] can be used to determine data
dynamic range in this method. The dynamic range of each data

item is obtained during traversal of the application dataflow graph
with the help of propagation rules defined by interval arithmetic
theory. Each operator or computation node has a defined propaga-
tion rule. One drawback of interval arithmetic is its susceptibility
to over-estimation problems. In recent years, researchers have de-
veloped methods to overcome this problem (e.g., see [17, 18]). The
flexibility of our proposed precision optimization methodology and
the underlying DICE framework allows such methods to be incor-
porated and experimented with. Development of such extensions is
a useful direction for further investigation.

3.3 DICE Unit Testing Framework
DICE includes a framework for implementation and execution of
tests for software projects [10]. A major goal of the testing capa-
bilities in DICE is to provide a lightweight and flexible unit testing
environment. It is lightweight in that it requires minimal learning
of new syntax or specialized languages, and flexible in that it can be
used to test source code in any language, including C, Java, Verilog,
and VHDL. This is useful in heterogeneous development environ-
ments so that a common framework can be used to test across all of
the relevant platforms. However, the DICE unit testing framework
is not restricted to unit testing or functional verification alone, but
is adaptable for use in a wide range of simulation-based applica-
tion exploration scenarios. This feature makes DICE well suited to
studying implementation issues for signal processing systems.

The basic component of the DICE unit testing framework is a
directory referred to as an Individual Test Subdirectory (ITS). A test
suite in DICE consists of an arbitrary number of ITSs that test the
different behaviors of the module under test (MUT).

An ITS includes the following required files, which provide a
standard interface for testing that is independent of the underlying
design language, target platform or development tools.
• A makeme script that contains all compilation steps required

before running the test or analysis (e.g., a driver program that
supplies the MUT with inputs and prints its outputs).

• A runme script that runs the test or analysis. The contents of
runme may vary depending on the type of the MUT. Through
appropriate programming of the runme file, the standard output
of runme is in general highly configurable by the person who
develops the test. Creative design of runme files can help to
make more powerful and convenient test organizations within
the DICE testing framework.

• A correct-output.txt file that contains the correct stan-
dard output that has to be produced by the test (i.e., after running
the runme file).

• An expected-errors.txt file that contains the error mes-
sages that the test is expected to produce on standard error. This
file is useful when the ITS checks for error conditions that the
MUT should be detecting and reporting.
DICE encourages designers to think of a module interface in

terms of streaming data primitives. Inputs and outputs are speci-
fied in the form of simple text files with streams of tokens. The
basic DICE utility that makes use of the required files and ex-
ercises the test suite, called dxtest, recursively traverses all
subdirectories executing makeme, followed by runme. It then
compares the actual output generated after running runme with
correct-output.txt and the actual standard error output with
expected-errors.txt, finally producing a summary of suc-
cessful and failed tests. This latter step is useful while testing, and
is not used in precision analysis. In this work, we use the DICE unit
testing framework as a simulation framework for precision analysis.

3.4 Dynamic Range Simulation with Functional DIF and
DICE
In our approach to precision analysis, a library of functional DIF
actors is created, which collectively compute the dynamic ranges
of the different operations (vertices) in the application graph. These
actors can be tested through the DICE unit testing framework. Since
we are using model-based principles by describing the application

507

as a dataflow graph, we are able to reuse the same top-level repre-
sentation for any model-based application analysis with or without
simulation. By reusing the application graph, we save significant
time in design exploration as the need for re-specifying the graph or
rewriting the DIF file is avoided. Similarly, the library of functional
DIF actors that compute dynamic ranges for different arithmetic op-
erations can be used across different applications. This helps signif-
icantly to streamline the overall effort and design infrastructure that
are devoted to precision analysis.

For dynamic range analysis in our approach, the ranges of val-
ues that can be assumed by the inputs to the application is specified
in the same manner as the input test patterns of a unit test. This
is done by inserting File Readers, which are functional DIF actors
that read input values from text files to provide input samples for
a simulation. Similarly, sink nodes are connected to File Writers,
which are functional DIF actors that write outputs to text files. The
dynamic range is computed by each actor based on the dynamic
ranges of the inputs using interval arithmetic theory. Since the data
ranges at all nodes have to be analyzed and not just at the sink nodes,
we connect File Writers to the intermediate nodes that record this
information. The input files are added to the ITS, and dxtest ex-
ecutes the simulation. The dynamic range at each node is captured
in text files in the ITS. The runme script in the ITS can be config-
ured for any post-processing on the outputs as demonstrated in the
ensuing case study.

4. CASE STUDY — PRECISION ANALYSIS FOR JACOBI
EIGENVALUE DECOMPOSITION

Eigenvalue decomposition (EVD) is used in a wide range of modern
signal processing and communication applications, such as MIMO
wireless communication, image recognition technologies, and di-
rection of wave arrival estimation algorithms. In this case study, the
EVD algorithm is implemented as part of a beamforming applica-
tion inherent to MIMO wireless technology. The matrix of interest
is a small and dense Hermitian matrix that characterizes the chan-
nel between each pair of transmit and receive antennas. The matrix
sizes under consideration are 2×2, 4×4 and 8×8.

The focus of the study is to conduct a preliminary exploration
of various bit precisions for EVD in order to provide a benchmark
for system designers to help decide on the internal precision of their
system given signal and noise variances and required output signal
to noise ratio (SNR). The objective is to obtain the minimum re-
quired SNR in EVD by reducing the internal precision of the com-
putation, thereby leading the way towards more efficient implemen-
tations (e.g., in terms of power consumption or cost).

4.1 Jacobi Eigenvalue Decomposition
Let A be a square (N × N) matrix with N linearly independent
eigenvectors. Then A can be factorized as:

A=VDV−1

Here, V is the square (N×N) matrix whose ith column is the eigen-
vector qi of A, and D is the diagonal matrix whose diagonal ele-
ments are the corresponding eigenvalues, i.e., Dii = λi. This is
known as the eigenvalue decomposition (EVD) or eigendecomposi-
tion of the matrix A.

The Jacobi method is explored due to its efficiency with re-
spect to small, dense matrices and its inherent parallelism. The
Jacobi method diagonalizes the given matrix by systematically re-
ducing the norm of the off-diagonal elements of the matrix. This
is achieved by performing a series of Jacobi rotations, where each
transformation is just a plane rotation designed to annihilate one of
the off-diagonal matrix elements. This algorithm overwrites A with
VTAV, where V is orthogonal and A is increasingly diagonal.

4.2 Motivation for Precision Analysis
The Jacobi EVD algorithm is an iterative algorithm with each sweep
of the algorithm propagating the errors of previous stages. Thus, a

Algorithm 1 Pseudocode for the Jacobi EVD [12].

while offset(A) > ε do
for p = 1 to n−1 do

for q = p+1 to n do
Compute (v1,v2,θ)

A = J(p,q,θ)T AJ(p,q,θ)
V =V J(p,q,θ)

end for
end for
Recalculate offset(A)

end while

Precision 2×2 4×4 8×8
Double X X X
Single X × ×
PF (31,10) X × ×
PF (31,8) X × ×
PF (24,10) X × ×
PF (24,8) X × ×
PF (16,10) X × ×
PF (16,8) X × ×

Table 1: Convergence of Jacobi EVD implementation for different
precisions.

high degree of precision in both the signal and coefficients is re-
quired to minimize the effects of these propagated errors. In such
an application, a full analysis of the data set is important to decide
which type of data format to use, as this is essential to both the
convergence of the algorithm, and the accurate computation of the
eigenvalues and eigenvectors.

Preliminary simulations test for the convergence of the Jacobi
EVD for various precisions. The results are documented in Table 1.
Here, the pseudo floating point (PF) format is a generalized floating
point format that we define, where any real number can be repre-
sented as Mantissa×2Exponent . The number of bits for the man-
tissa and exponent are given by I and E, respectively. By using this
pseudo floating point format, all computations in the program are
performed within the precision given by (I,E), thereby simulating
a system with the given precision. In this work, the precisions of in-
terest are all combinations from within I = [16,31] and E = [6,10].

Theoretically, the Jacobi EVD always converges [12]. How-
ever, due to insufficient precision leading to rounding and other er-
rors, it is possible that the algorithm may not always converge with
finite arithmetic implementations as observed in Table 1. This war-
rants a detailed analysis of the required precision at every step of
the algorithm when mapping into an implementation.

4.3 Dataflow Model of the Jacobi EVD
In order to identify the parts of the algorithm that lead to non-
convergence of an implementation, we first create a mixed-grained
dataflow graph for the application using DIF. In this dataflow graph,
the more precision-sensitive parts are represented with finer granu-
larity actors (e.g. parts involving division or square root operations).
These parts are decomposed into detailed dataflow representations
of their internal computations, thereby exposing their computational
structure in more depth. All of the graph vertices are implemented
as actors within the functional DIF package. By performing appro-
priate analysis on the data propagating through this graph at each
node, we can estimate the required precision at every node.

The Jacobi algorithm has two bounded loops to iterate over the
rows and columns of the matrix, and one unbounded loop to ex-
ecute the algorithm until a suitable solution within specified error
bounds has been obtained. Since the base graph structure remains
the same for all the iterations, we simulate the graph behavior for
the required number of iterations by setting the iteration count in the
simulator. We use a statistical estimate for the number of iterations
of the unbounded loop. The dataflow graph for the Jacobi EVD for

508

Figure 1: Dataflow graph for the 2x2 Jacobi EVD.

one iteration of the algorithm is shown in Figure 1.

4.4 Simulation with Functional DIF and DICE

In dataflow terminology, all of the actors in our Jacobi EVD model
conform to synchronous dataflow (SDF) semantics, which means
that on each execution, each actor produces constant amounts of
data from its input ports and produces constant amounts of data on
its output ports [8]. Only one iteration of the graph is required for
a 2×2 matrix. Hence, the graph in Figure 1 with (p,q) as (0,1) is
the dataflow graph for the 2×2 Jacobi EVD. However, for the 4×4
and 8×8 matrices, the numbers of required iterations are set in the
functional DIF simulator, and the reconfigurability of the runme
file in DICE is applied to facilitate the feedback of output to input
for successive iterations.

For example, the input files for data ranges for the in-
put A matrix are in-Areal.txt and in-Aimag.txt. The
output files for the V and D matrices are out-Vreal.txt,
out-Vimag.txt, out-Dreal.txt and out-Dimag.txt.
In order to create a feedback loop from the output to the input, the
File Readers and File Writers read and write from intermediate files
Vreal.txt, Vimag.txt, Dreal.txt and Dimag.txt. The
runme file is programmed in such a way that the input files are
first copied to the intermediate files, followed by the actual simula-
tion before finally copying the intermediate files to the output files.
This way the input files remain intact and are not overwritten by any
intermediate results. By exercising model-based design integrated
with appropriate simulation capabilities, the development process is
largely automated and simplified, and the development time is sig-
nificantly reduced. Ultimately, each actor has an associated text file
consisting of the corresponding dynamic ranges.

4.5 Results and Discussion

The dynamic range simulation for an input matrix of size 2× 2 is
consistent with the results documented in Table 1. However, for
the 4× 4 matrix, Table 2 indicates multiple nodes with infinite dy-
namic range. The first actors that correspond to the infinite range
are recipmu1 and recipmu2, which calculate the dynamic
range of a reciprocal operation on the outputs from EVDmu12
and EVDmu22. Since the minimum possible values at EVDmu12
and EVDmu22 are identically 0, the values at recipmu1 and
recipmu2 are unbounded.

Node Computation Dynamic Range
ComplexMag

√
a2 +b2 [1.49×10−8,4.78×1014]

EVDdelta (a−b)/c [−4.65×1022,4.65×1022]
EVDdelta2p4 a2 +4 [4,2.17×1045]
sqrt

√
x [2,4.65×1022]

EVDmu12 (
√

δ 2 +4−δ)2 [0,2.16×1045]

EVDmu22 (
√

δ 2 +4+δ)2 [0,2.16×1045]
Sqrtp1mu1

√
x+1 [1,4.65×1022]

Sqrtp1mu2
√

x+1 [1,4.65×1022]
ev-x1, ev-x2 1/x [2.15×10−23,1]
recipmu1 1/x [0,∞]
recipmu2 1/x [0,∞]
recipy1

√
x+1 [0,∞]

recipy2
√

x+1 [0,∞]
ev-y1, ev-y2 1/x [0,1]
negev-y2 −x [−1,0]
mult1 - mult4 a∗b [−1,1]
Vupdate AB [−3.51×106,1.76×106]
Dupdate1, 2 AB [−1.04×1015,1.04×1015]

Table 2: Dynamic ranges for computations in 4×4 Jacobi EVD.

The actor EVDmu12 computes the dynamic range of the op-
eration (

√
δ 2 +4− δ)2. Mathematically speaking, this expression

should always be greater than 0 because it is a squaring operation,
and
√

δ 2 +4 6= δ . Because the minimum value at this node is 0
when it should not be so, further operations in the application yield
values of ∞, thereby leading to many incorrect computations and
loss of convergence.

On closely observing the flow of the data in this part of the
graph, and the respective dynamic ranges, it can be seen that this
happens when δ assumes very high values. These operations corre-
spond to equations (2) and (3). As the number of iterations increases
in the Jacobi EVD algorithm, the off-diagonal elements (parameter
b in the equation for δ) tend to 0. Therefore, as the number of
iterations increases, δ → ∞. In turn, as δ → ∞, we observe that√

δ 2 +4 ≈ δ and
√

δ 2 +4− δ → 0. In case of insufficient preci-
sion, this difference becomes exactly 0, leading to incorrect compu-
tations further on. The same happens when δ < 0 with EVDmu22,
which computes (

√
δ 2 +4+δ)2.

v1 =

 e jθ√
1+ 1

|µ1 |2
1√

1+|µ1|2

 v2 =

 −e jθ√
1+ 1

|µ2 |2
1√

1+|µ2|2

 (1)

µ1 =
2√

δ 2 +4−δ
µ2 =

2√
δ 2 +4+δ

(2)

δ =
a− c
|b|

θ = tan−1
[

Im(b)
Re(b)

]
(3)

By using our application exploration framework and carefully
adopting fundamental principles of precision analysis, we have
identified the source of precision loss in the Jacobi EVD. These
operations require higher precision for accurate behavior across the
entire data set. However, by identifying solutions to the source of
the precision loss problem, and verifying them, we can provide use-
ful feedback to DSP software designers to optimize the implemen-
tation. We achieve this through reformulation of the equation for
µ1 in (2) in such a way as to avoid the difference operation. When
δ > 0, µ2 can be computed without any precision loss due to the
presence of the addition operation. On close inspection of the equa-
tions in (2), it can be seen that µ1 can be expressed in terms of µ2,
thereby avoiding the difference operation.

µ1µ2 =

(
2√

δ 2 +4−δ

)(
2√

δ 2 +4+δ

)
=

4

(
√

δ 2 +4)2−δ 2
= 1

509

Node Original New Dynamic Range
Dyn Range

EVDmu12 [0,2.16×1045] [10−45,2.16×1045]
recipmu1, recipmu2 [0,∞] [4.6×10−46,10−45]
recipy1, recipy2 [1,∞] [1,4.65×1022]
ev-y1, ev-y2 [0,1] [2.15×10−23,1]
negev-y2 [−1,0] [−1,−2.15×10−23]

Table 3: Dynamic ranges for 4×4 Jacobi EVD with reformulation.

10
1

10
2

10
3

10
4

10
5

40

60

80

100

120

140

160

Condition number (log scale)

S
N

R
 (

in
 d

B
)

 Matlab

Pseudofloat 31,10

Pseudofloat 31,8

Pseudofloat 24,10

Pseudofloat 24,8

Pseudofloat 16,10

Pseudofloat 16,8

Figure 2: SNR vs. condition number for 4×4 Hermitian matrix.

µ1 = 1/µ2 = (
√

δ 2 +4+δ)/2

This theoretically eliminates the root of the precision problem,
and is a useful optimization to the algorithm. In order to verify this
new formulation, the actors for computing the dynamic range of µ1
and µ2 were accordingly rewritten and the dynamic range simula-
tion with functional DIF was repeated. The new ranges obtained are
all within [−1046,1046] and can thus be implemented with pseudo
floating point with at least E = 10. However, since this analysis is
conservative, it may be possible to implement this algorithm with
E < 10, which we confirm with our C-based implementation.

This analysis was verified with the C-based implementation by
rewriting the code segment corresponding to the computation of
µ1,2. The new implementation converged for all of the precisions
under consideration and produced valid results for all configura-
tions with E ≥ 7. The plot in Figure 2 shows the SNR of the re-
constructed matrix after EVD as a function of the independent pa-
rameter, the matrix condition number, for both MATLAB and C for
various data formats. By using DIF to model the EVD and func-
tional DIF to prototype the dynamic range analysis of this applica-
tion in the DICE framework, we have demonstrated how dataflow
modeling and DICE synergistically facilitate high level application
exploration. DICE’s highly flexible and reconfigurable framework
enables it to be used in various stages of application development,
and is especially well-suited for dataflow based implementations.

5. CONCLUSION

In this work, we have demonstrated model-based precision analy-
sis with an exploration study into the performance versus precision
metrics for Jacobi Eigenvalue Decomposition. We modeled the ap-
plication graph and the precision analysis with DIF and functional
DIF, and executed the entire analysis by appropriately configuring
the DICE unit testing framework. Although the aim was to per-
form an analysis and not testing or verification per se, simulation of
the application graph was still required with external inputs, mak-
ing DICE a convenient framework for this exploration study. DICE
enjoys a high level of synergy with DIF, our model-based develop-
ment environment, in high level application exploration and in the
seamless integration of testing with design.

We were able to analyze the dynamic ranges at different nodes
in the application graph, and hence identify the nodes that required
higher precision than what was available. By reformulating the

mathematical expressions for these operations, we reliably circum-
vented this problem and provided relevant feedback to the algo-
rithm developers. This case study is a demonstration of the use
of dataflow modeling in early stage application exploration, and the
use of DICE in the overall design flow. With this case study, the in-
tegration of DICE with a model-based approach was highlighted to
make the application design process more efficient, yet still rigorous
and evolvable.

REFERENCES

[1] G. Frantz and R. Simar, “Comparing fixed and floating point
DSPs,” Tech. Rep. SPRY061, Texas Instruments, 2004.

[2] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala,
Eds., Handbook of Signal Processing Systems, Springer, 2010.

[3] C. Hsu and S. S. Bhattacharyya, “Porting DSP applications
across design tools using the dataflow interchange format,” in
Proc. RSP 2005, Montreal, Canada, June 2005, pp. 40–46.

[4] D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic
floating-point to fixed-point conversion for DSP code genera-
tion,” in Proc. CASES 2002, Grenoble, France, October 2002,
pp. 270–276.

[5] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A
fixed-point design and simulation environment,” DATE 1998,
p. 429, 1998.

[6] P. Belanovic and M. Rupp, “Automated floating-point to fixed-
point conversion with the fixify environment,” in Proc. RSP
2005, Washington DC, USA, 2005, pp. 172–178.

[7] A. A. Gaffar, W. Luk, P. Y. K. Cheung, and N. Shirazi, “Cus-
tomising floating-point designs,” in Proc. FCCM 2002, Wash-
ington DC, USA, 2002, p. 315.

[8] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous dataflow programs for digital signal processing,”
IEEE Transactions on Computers, February 1987.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Cyclo-static dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 44, no. 2, pp. 397–408, February 1996.

[10] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane,
C. Shen, and G. Zaki, “The DSPCAD integrative command
line environment: Introduction to DICE version 1,” Tech.
Rep. UMIACS-TR-2009-13, Institute for Advanced Computer
Studies, University of Maryland at College Park, August 2009.

[11] W. Plishker et al., “Model-based DSP implementation on FP-
GAs,” in Proc. RSP 2010, Fairfax, Virginia, June 2010, pp.
8–11.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, The
Johns Hopkins University Press, 3rd edition, 1996.

[13] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow
graphs using the token flow model,” in Proc. ICASSP 1993,
April 1993.

[14] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhat-
tacharyya, “Functional DIF for rapid prototyping,” in Proc.
RSP 2008, Monterey, California, June 2008, pp. 17–23.

[15] K. Han and B. L. Evans, “Optimum wordlength search using
sensitivity information,” EURASIP Journal on Applied Signal
Processing, vol. 2006, pp. 76, 2006.

[16] R. B. Kearfott, “Interval computations: Introduction, Uses and
Resources,” Euromath Bulletin, vol. 2, pp. 95–112, 1996.

[17] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts
and Applications,” Numerical Algorithms, vol. 37, no. 1, pp.
147–158, 2004.

[18] K. Makino and M. Berz, “Efficient control of the dependency
problem based on Taylor model methods,” Reliable Comput-
ing, vol. 5, pp. 3–12, 1999.

510

