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ABSTRACT

This paper addresses the problem of jointly estimating the statisti-
cal distribution and segmenting multiple-tissue high-frequency ul-
trasound images. The distribution of multiple-tissue images is mod-
eled as a spatially coherent finite mixture of heavy-tailed Rayleigh
distributions. Spatial coherence inherent to biological tissues is in-
troduced into the model by enforcing local dependance between pix-
els. An original Bayesian algorithm combined with a Markov chain
Monte Carlo method is then derived to jointly estimate the mix-
ture parameters and a label vector associating each voxel to a tissue.
Precisely, a hybrid Metropolis-within-Gibbs sampler is proposed to
draw samples that are asymptotically distributed according to the
posterior distribution of the Bayesian model. These samples are
then used to compute the Bayesian estimators of the model parame-
ters. Simulation results are conducted on synthetic data to illustrate
the performance of the proposed estimation strategy. The method is
then successfully applied to the segmentation of an in-vivo lesion in
a high frequency 3D ultrasound image.

Index Terms— Heavy-tailed Rayleigh distribution, mixture model,
Potts-Markov field, Bayesian estimation, Gibbs sampler.

1. INTRODUCTION

Ultrasound imaging is a longstanding medical imaging modality with
important applications in diagnostics, preventive examinations, ther-
apy and image-guided surgery. Recent advances in high frequency
transducers and 3D probes have opened new opportunities for this
modality in dermatological oncology, where ultrasound images are
increasingly used for lesion assessment. This evaluation relies on
two manual segmentation measures: the depth of the lesion and the
number of skin layers that has been invaded.

Despite the extensive literature on the subject, automatic seg-
mentation of ultrasound images is still a challenging task and a fo-
cus of considerable research efforts. A detailed survey of the state
of the art up to 2006 is provided in [1]. Recent works have proposed
the application of Bayesian mixture models to ultrasound image seg-
mentation. Cardinal et al. proposed an intravascular segmentation
method based on a Rayleigh mixture model [2]. This work was ex-
tended to non-Rayleigh images by Destrempes et al. [3], who pro-
posed a carotid artery segmentation method based on a Nakagami
mixture. In both cases the estimation of the mixture parameters and
the segmentation of voxels were performed separately. First, the pa-
rameters of the mixture model were estimated using the expectation-
maximization (EM) algorithm under the assumption that voxels are
independent. Then, voxel classification was performed condition-
ally to the mixture parameters using region-based segmentation al-
gorithms. In both cases the segmentation was initialized using a
manual solution.

This paper addresses the problem of jointly estimating the pa-
rameters of the mixture model and the classification of voxels in 2D
and 3D skin ultrasound images. Ultrasound images are modeled as
a heavy-tailed Rayleigh mixture, as in [4]. This model, which origi-
nally described voxel classes independently, is now equipped with a
Markov random field (MRF) that takes into account the spatial cor-
relation inherent to biological tissues. MRFs have shown interesting
properties to model spatial correlation in images [5]. The main con-
tribution of this paper is to show that MRFs are appropriate to ultra-
sound images whose statistical properties are descried by mixtures
of α-Rayleigh distributions.

2. PROBLEM STATEMENT

The mixture model used in this paper to describe ultrasound image
voxels has been presented in detail in [4]. Some elements of this
model are recalled in this section for consistency. Recent works on
scattering in biological tissues have shown that the α-Rayleigh dis-
tribution is appropriate to model the distribution of skin ultrasound
image voxels [6]. This paper considers the case where the ultrasound
image can be divided into multiple regions (or classes) associated
with different biological tissues, each with its own echogenicity and
therefore its own speckle statistics. As a consequence, the observed
ultrasound image envelope r is assumed to be by an α-Rayleigh sta-
tionary process with piecewise constant parameters.

Equivalently, each ultrasound image voxel is a mixture of K
α-Rayleigh distributions, where K is the number of classes in the
image and wk represents the relative weight (or proportion) of the
kth class. More precisely, we assume there is a set of K stationary
classes {C1, ..., CK} with proportions {w1, ..., wK} such that

rn ∼
K∑
k=1

wkαR(αk, γk) (1)

where rn ∈ R+ is the nth image voxel and αR(αk, γk) denotes the
α-Rayleigh distribution with parameters αk and γk (associated with
the class Ck). Note that the number of classes K is assumed to be
known in this study. This assumption is based on the fact that sonog-
raphy technicians can quickly assess the number of tissues within a
region of interest by visual inspection. A Bayesian model was in-
troduced in [4] to estimate the α-Rayleigh mixture model parame-
ters α = (α1, . . . , αK)T and γ = (γ1, . . . , γK)T and the class
of each voxel of an ultrasound image. The next section generalizes
this Bayesian model to exploit spatial correlations between adjacent
voxels of the image.
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3. BAYESIAN MODEL

In order to characterize the class of the nth image voxel, we intro-
duce a label vector z = {z1, . . . , zN} such that zn = k if and only
if rn ∈ Ck. This label vector will allow one to characterize each im-
age observation and to discriminate different kinds of tissues. This
section defines a Bayesian model associated with the unknown pa-
rameter vector θ = (αT ,γT ,zT )T for a mixture of α-Rayleigh
distributions. This model requires to define the likelihood of the ob-
servation vector r and the priors for the unknown parameters.

3.1. Likelihood

Assuming that the observations rn are conditionally independent
and using the mixture model (1), the likelihood of the proposed
Bayesian model can be written as in [4]

p(r|θ) =

K∏
k=1

∏
{n|zn=k}

pαR(rn|αk, γk) (2)

where

pαR(rn|αk, γk) = rn

∫ ∞
0

λ exp [−(γkλ)αk ] J0(rnλ) dλ (3)

and where J0 is the 0th order Bessel function of the first kind.

3.2. Parameter priors

3.2.1. Labels

We propose in this paper to exploit the spatial coherence inherent
to biological tissues. More precisely, it is natural to consider that
there is some correlation between the characteristics of a given voxel
and those of its neighbors. Since the seminal work of Geman [7],
MRFs have become very popular to introduce spatial correlation in
images. MRFs assume that the distribution of a pixel conditionally
to all other pixels of the image equals the distribution of this pixel
conditionally to its neighbors. Consequently, it is important to prop-
erly define the neighborhood structure. The neighborhood relation
between two pixels (or voxels) i and j has to be symmetric: if n
is a neighbor of m then m is also a neighbor of n. There are sev-
eral neighborhood structures that have been used in the literature. In
the bidimensional case, neighborhoods defined by the four or eight
nearest voxels represented in Fig. 1 are the most commonly used.
Similarly, in the tridimensional case the most frequently used neigh-
borhoods are defined by the six or fourteen nearest voxels repre-
sented in Fig 2. In the rest of this paper 4-pixel neighborhoods will
be considered for 2D images and 6-voxel neighborhoods for 3D im-
ages. Therefore, the associated set of neighbors, or cliques, have
only vertical, horizontal and depth possible configurations (see [7,8]
for more details).

Once the neighborhood structure has been established, the MRF
can be defined. Let zn denote the random variable indicating the
class of the nth image voxel. In the case of K classes, the random
variables z1, z2, . . . , zN take their values in the finite set {1, . . . ,K}.
The whole set of random variables z1, z2, . . . , zN forms a random
field. An MRF is then defined when the conditional distribution of
zn given the other pixels z−n = (z1, ..., zn−1, zn+1, ..., zN ) only
depend on its neighbors zV(n), i.e.,

P[zn|z−n] = P[zn|zV(n)] (4)

where V(n) is the considered neighborhood structure.

Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The
considered pixel appears as a void red circle whereas its neighbors
are depicted in full black and blue.

Fig. 2. 6-voxel (left) and 14-voxel (right) neighborhood structures.
The considered voxel appears as a void red circle whereas its neigh-
bors are depicted in full black and blue.

In this study we will first consider 2D and 3D Potts Markov
fields as prior distributions for z. More precisely, 2D MRFs are con-
sidered for single-slice (2D) ultrasound images whereas 3D MRFs
are investigated for multiple-slice (3D) images. Note that Potts Markov
fields are particularly well suited for label-based segmentation as ex-
plained in [9]. By the Hammersley-Clifford theorem the correspond-
ing prior for z can be expressed as follows:

p(z) =
1

C(β)
exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 (5)

where β is the granularity coefficient, C(β) is the normalizing con-
stant or partition function [10] and δ(·) is the Kronecker function.
The hyperparameter β tunes the degree of homogeneity of each re-
gion in the image. Some simulations have been conducted to show
the influence of this parameter on image homogeneity. Synthetic
3D images have been generated using a Potts-Markov model with
K = 3 classes (corresponding to three gray levels in the image) and
a first order neighborhood structure. Fig. 3 shows different realiza-
tions corresponding to different values of β. This figure shows that
a small value of β induces a noisy image with a large number of
regions, contrary to a large value of β that leads to few and large ho-
mogeneous regions. In this work, the granularity coefficient β will
be fixed a priori. However, it is interesting to mention that the esti-
mation of β has recently received a great attention in the literature
[11–14]. Estimating the granularity coefficient using one of these
methods is clearly an interesting problem that will be investigated in
future works. Finally, it is interesting to note that despite not know-
ing C(β), drawing labels z = {z1, . . . , zN} from the distribution
(5) can be easily achieved by using a Gibbs sampler [15].

3.2.2. α-Rayleigh parameters

The priors used for the parameters αk and γk (k = 1, . . . ,K) have
been introduced and motivated in [4]: αk has a uniform distribution
on (0, 2)

αk ∼ U(0, 2) (6)
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Fig. 3. Synthetic images generated from a 3D Potts-Markov model
with (from upper-left to bottom-right) β = 0.6, 1, 1.2, 1.4

since the interval (0, 2) covers all possible values of this parameter.
The prior for the spread γk is a conjugate inverse gamma distribution
with hyperparameters a0 and b0

γk ∼ IG(a0, b0), k = 1, . . . ,K (7)

where the hyperparameters are fixed in order to obtain a vague prior
(a0 = 1 and b0 = 1 will be used in our simulations). Assuming a
priori independence between the parameters αk, γk and z the fol-
lowing result is obtained

p (θ) = p(α)p(γ)p(z) =

K∏
k=1

p(αk)p(γk)p(z). (8)

3.3. Posterior Distribution of (θ,z)

Using Bayes theorem the posterior distribution of θ can be expressed
as follows

p (θ|r) ∝ p(r|α,γ,z)p(α)p(γ)p(z) (9)

where the likelihood p(r|θ) and the prior distribution p(θ) have
been defined in (2) and (8), respectively. Unfortunately the posterior
distribution (9) is too complex to derive the minimum mean square
error (MMSE) or maximum a posteriori (MAP) estimators of the
unknown parameters α, γ and z. One can think of using the EM al-
gorithm that has received much attention for mixture problems (see
[2,3] for applications to ultrasound images). However, the EM algo-
rithm cannot be used easily for mixtures of α-Rayleigh distributions
since the expectation of (9) is not defined if there is at least one char-
acteristic index αk < 1. Also, as explained in [16, p. 259], the EM
algorithm suffers from the initialization issue and can converge to
local maxima or saddle points of the log-likelihood function. An in-
teresting alternative is to use an MCMC method generating samples
that are asymptotically distributed according to the target distribu-
tion (9) [15]. The generated samples are then used to approximate
the Bayesian estimators. This strategy has been used successfully in
many image processing applications [17–21]. One sampling tech-
nique allowing the parameters of ultrasound images to be estimated
is studied in the next section.

4. HYBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sampler that
generates samples that are asymptotically distributed according to
(9). The conventional Gibbs sampler draws samples according to the
conditional distributions associated with the distribution of interest
(here the posterior (9)). When a conditional distribution cannot be
sampled easily, one can resort to a Metropolis-Hastings move, which
generates samples according to an appropriate proposal and accept
or reject these generated samples with a given probability. The re-
sulting sampler is referred to as Metropolis-within-Gibbs sampler
(see [15] for more details about MCMC methods). The sampler in-
vestigated in this section is based on the conditional distributions
P[z|α,γ, r], p(α|z,γ, r) and p(γ|z,α, r) that are provided in the
next paragraphs.

4.1. Approximation of the Likelihood

Evaluating the likelihood function defined in (2) involves the com-
putation of the following indefinite integral∫ ∞

0

λ exp [−(γkλ)αk ] J0(rnλ) dλ. (10)

This computation is very time-consuming and is required at every
step of the sampler. An efficient way to compute the likelihood (2)
is to use the following asymptotic expansions [22, 23]

pαR(rn|αk, γk) =

P∑
p=0

apr
2p+1
n + o

(
r2(P+1)+1
n

)
(11)

as rn → 0 and

p(rn|αk, γk) =

P∑
p=1

bpr
−αkp−1
n + o

(
r−αk(P+1)−1
n

)
(12)

as rn →∞ where the coefficients ap and bp are

ap =
1

αkγk

(−1)p

(p!)222p
Γ

(
2p+ 2

αk

)
γ−2p−1
k

bp =
(−1)p−1 2pαk+1

p!πγk
Γ2

(
pαk + 2

2

)
sin
(pπαk

2

)
γ
pαk+1
k

The choice of P and other considerations regarding the implemen-
tation of (11) and (12) have been studied in [22].

4.2. Conditional probability P[z|α,γ, r]

For each pixel or voxel n = {1, 2, . . . , N}, the class label zn is
a discrete random variable whose conditional distribution is fully
characterized by the probabilities

P[zn = k|z−n, rn, αk, γk] ∝ p(rn|zn = k,α,γ)p(zn|z−n)
(13)

where k = 1, . . . ,K and where it is recalled that K is the num-
ber of classes and z−n is the vector z whose nth element has been
removed. These posterior probabilities can be expressed as

P[zn = k|z−n, rn, αk, γk]

∝ exp

 ∑
n′∈V(n)

βδ(zn − zn′)


× rn

∫ ∞
0

λ exp [−(γkλ)αk ] J0(rnλ) dλ.

(14)
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Note that the posterior probabilities of the label vector z in (14)
define an MRF. Sampling from this conditional distribution can be
achieved by drawing a discrete value in the finite set 1, . . . ,K with
probabilities (14). The integral rn

∫∞
0
λ exp [−(γkλ)αk ] J0(rnλ) dλ.

is computed using the approximations presented in paragraph 4.1.

4.3. Conditional probability density function p(α|γ,z, r)

The conditional density p(α|γ,z, r) can be expressed as follows

p(α|γ,z, r) ∝ p(r|α,γ,z)p(α)

where p(r|α,γ,z) is defined in (2) and p(α) =
∏K
k=1 p(αk).

The generation of samples according to p(α|γ,z, r) is not easy
to perform. We propose in this paper to sample α coordinate-by-
coordinate using Metropolis-Hastings (MH) moves, leading to a
Metropolis-within-Gibbs algorithm as in [4]. Note that the likeli-
hoods pαR(rn|α∗k, γk) and pαR(rn|α(t−1)

k ) have been computed
using the approximations described in paragraph 4.1.

4.4. Conditional probability density function p(γ|α,z, r)

The conditional density p(γ|α,z, r) can be expressed as follows

p(γ|α,z, r) ∝ p(r|α,γ,z)p(γ)

where p(r|α,γ,z) is defined in (2) and p(γ) =
∏K
k=1 p(γk). Again,

the generation of samples according to this distribution is not easy.
Consequently, we propose to update each component of γ by using
an MH move. The proposal distribution associated with this move
is a normal distribution centered on the previous value of the chain
with variance σ2

γ∗k ∼ N
(
γ
(t−1)
k , σ2

)
. (15)

This strategy is referred to as random walk MH algorithm, as in [4].
Again, the likelihoods pαR(rn|αk, γ∗k) and pαR(rn|αk, γ(t−1)

k ) have
been computed using the approximations described in paragraph 4.1.

5. SIMULATIONS RESULTS

This section presents experimental results conducted on synthetic
and real data to assess the performance of the proposed α-Rayleigh
mixture model and the associated Bayesian estimation algorithm.

5.1. Synthetic Data

The proposed algorithm was first applied to a synthetic 3-component
α-Rayleigh mixture displayed in Fig. 4(a). The parameters associ-
ated with the mixture components of the 3 different 2D regions are
α = [1.99; 1.99; 1.8] and γ = [1; 5; 10]. Figure 4(b) shows the re-
sulting observation vector r, which is the only input provided to the
algorithm. Note that the different observations are clearly spatially
correlated. The proposed Gibbs sampler has been run for this exam-
ple using a two dimensional random field with a 4-pixel neighbor-
hood structure. The averaged MMSE estimates and the correspond-
ing standard deviations for the different parameters are reported in
Table 1. These estimates have been computed from a single Markov
chain of 25, 000 iterations whose first 100 iterations (burn-in period)
have been removed. The estimated parameters are clearly in good
agreement with the actual values of the α-Rayleigh mixture compo-
nents. Figure 4(c) shows the class labels estimated by the MAP rule
applied to the last samples of the Markov chain. The three classes
are recovered even if there are a few misclassifications due to the
complexity of the problem.

Table 1. Parameter estimation
true value MMSE estimates standard deviation

α1 1.99 1.99 0.002

α2 1.99 1.99 0.003

α3 1.80 1.79 0.006

γ1 1.00 1.00 0.003

γ2 5.00 5.01 0.025

γ3 10.00 9.96 0.036

(a) (b) (c)

Fig. 4. (a) True labels, (b) observations r, (c) MAP estimates for a
3-class mixture.

5.2. Application to real data

After validating the proposed Gibbs sampler on synthetic data, this
section applies the proposed algorithm to the segmentation of a skin
lesion. This experiment was conducted using a 3D high frequency
ultrasound image of in-vivo skin tissues, acquired at 100MHz with
a focalized 25MHz 3D probe. Fig. 5(a) shows a skin lesion outlined
by the red rectangle. This region is displayed with coarse expert an-
notations in figure 5(b). It should be noted that annotations are used
to locate the lesion and do not represent ground truth. The proposed
Bayesian algorithm was used to label each voxel of an ultrasound
image as healthy or lesion tissue. The estimated labels obtained us-
ing a bidimensional random field with granularity coefficient β = 1
are displayed in figure 5(c). For comparison purposes figure 5(d)
shows the estimation results when labels are considered a priori in-
dependent, as in [4]. Due to the proposed MRF prior for the labels,
the spatial correlations between image voxels are clearly recovered.

Furthermore, the proposed algorithm was also applied in three
dimensions using a tridimensional random field with granularity co-
efficient β = 1. Three slices of the 3D B-mode image associated
with the region of interest depicted in figure 5(a) are shown in fig-
ures 6(a), 6(b) and 6(c). Figures 6(d), 6(e) and 6(f) show the results
obtained when labels are considered a priori independent, as in [4].
The labels estimated with the proposed 3D method are displayed in
figures 6(g), 6(h) and 6(i) where healthy voxels are represented in
white and lesion voxels in red. We observe that most of the MAP
labels are in very good agreement with the expert annotations. The
improvement obtained from considering correlations in the third di-
mension can be assessed by comparing figures 5(c) and 6(h), which
have been computed from the same data slice. We observe that us-
ing a 3D MRF reduces significantly the number of misclassifications
and improves the agreement with the expert annotations.

6. CONCLUDING REMARKS

A spatially coherent finite mixture of α-Rayleigh distributions was
proposed to represent the distribution of envelope ultrasound images
backscattered from multiple tissues. This work extends the mixture
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(a) Dermis view with skin lesion (ROI = 100× 100× 3).

(b) ROI (slice 2) (c) MRF Labels z (d) Independent Labels z

Fig. 5. Log-compressed ultrasound images of skin lesion and the
corresponding estimated labels (healthy = white, lesion = red). Fig-
ure (c) proposed 2D algorithm, (d) algorithm of [4]

.

(a) ROI (slice 1) (b) ROI (slice 2) (c) ROI (slice 3)

(d) Ind. Labels z (1) (e) Ind. Labels z (2) (f) Ind. Labels z (3)

(g) MRF Labels z (1) (h) MRF Labels z (2) (i) MRF Labels z (3)

Fig. 6. Log-compressed ultrasound images of skin lesion and the
corresponding estimated labels (healthy = white, lesion = red). Fig-
ures (d)-(f) show the results obtained by considering that voxel labels
are independent, as in [4]. Figure (g)-(i) shows the results obtained
with the proposed 3D Markov random field (MRF) method.

model proposed in [4] which did not consider spatial information.
Spatial correlation was introduced into the model by a Markov ran-
dom field that promotes dependance between neighbor pixels. Based
on the proposed model, a Bayesian segmentation method was de-
rived. Bidimensional and tridimensional implementations of this
segmentation method have been presented using a Markov chain
Monte Carlo algorithm that jointly estimates the unknown param-
eters of the mixture model and classifies voxels into different tis-
sues. The method was successfully applied to the segmentation of
an in-vivo lesion in a high frequency 3D ultrasound image. Future

works include the study of estimation algorithms for the granularity
coefficient defining the Markov random field prior.
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