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ABSTRACT

In this paper, we introduce a new speech bandwidth exten-
sion (BWE) algorithm which involves phonetic and speaker
dependent estimation of the high-band part of the spectral
envelope. Speech phoneme information is extracted by using
a hidden Markov model. Speaker vocal tract shape informa-
tion corresponding to the wideband signal is extracted by a
codebook search. The proposed method allows better estima-
tion of high-band formant frequencies, especially for voiced
sounds, and better estimation of spectral envelope gain, espe-
cially for unvoiced sounds. Postprocessing of the estimated
vocal tract shape allows artifacts reduction in cases of erro-
neous estimation of speech phoneme or vocal tract shape.
We present experimental results that demonstrate improved
wideband quality for different speech sounds in comparison
to other BWE methods.

1. INTRODUCTION

Current public switched telephone networks (PSTN) limit
the bandwidth of the speech signal to 0.3-3.4kHz. This nar-
rowband (NB) limitation results in degradation of speech
quality. One way to achieve high quality speech is by apply-
ing a wideband (WB) coding solution. WB coders expand
the coded speech bandwidth to 0.05-7 kHz. Unfortunately,
this solution requires an expensive network upgrade. A pos-
sible solution for the transition period to WB speech support-
ing networks, is to artificially extend the NB speech signal to
high-band (HB) frequencies from 3.4 kHz to 7 kHz [1]. This
technique is transparent to the transmitting network, as it is
implemented only at the receiving end.

Most BWE algorithms use the source-filter model of
speech production. This model considers the speech signal
as being produced by a spectrally flat excitation source that
passes through an auto-regressive (AR) filter [2]. This model
suggests separation of the BWE algorithm into two indepen-
dent tasks of HB excitation and HB spectral envelope esti-
mation [1].

The estimation of the HB spectral envelope and its gain
is the most crucial stage for a high quality BWE algorithm.
The HB extension of the spectral envelope aims to enhance
speech quality, as well as intelligibility. The HB spectral en-
velope gain may affect the level of artifacts, interpreted as
quality degradation. Hence, most recent BWE algorithms
use different techniques to map NB speech features to HB
features that represent the HB spectral envelope and gain.
These techniques include codebook mapping [3, 4], linear
mapping [5, 6], Neural Networks [7] and statistical meth-
ods by Gaussian mixture models (GMM) and hidden Markov
models (HMM) [8, 9]. These techniques still face prob-
lems with spectral envelope estimation of some speech sound
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classes, especially unvoiced sounds. They also show qual-
ity variations for different speakers and some hissing and
whistling artifacts due to gain overestimation and discontinu-
ities in the time evolution of the estimated spectral envelope.

One method to improve HB spectral envelope estimation
is to incorporate speech-sound class information in the es-
timation process. This information is especially crucial for
better estimation of unvoiced sounds, which are character-
ized by low NB energy while having high HB energy. Voiced
and unvoiced sounds classification is used in [4] for code-
book mapping. Voiced sounds, sibilants and stop-consonants
classes are used in [7] for HB spectral shape estimation. Pho-
netic transcription is used in [10] for supervised training of
an HMM statistical model.

Another way to improve the HB spectral envelope esti-
mation is by making it robust to variation of speakers. Dif-
ferent speakers yield different formants locations even when
representing the same speech linguistic content [2]. Using
speaker related features such as vocal tract area function
(VTAF) allows a better speaker-dependent estimation. The
VTAF represents the vocal tract’s physical shape as a func-
tion of the distance from the glottis. The concatenated tube
model is used for VTAF shape representation [2, 11]. The
algorithm in [5] uses this model to estimate the formants lo-
cations in the HB for voiced sounds. In [12, 13] the WB
spectral envelope is obtained from an estimation of the WB
VTAF. As speech is produced by a physical system modeled
by the VTAF, the estimation of the WB VTAF is done in
[12, 13] by interpolating the NB VTAF.

Gain estimation is possible as part of the HB spectral en-
velope estimation, like in [6], or by WB spectral envelope
estimation and gain adjustment to the received NB spectral
envelope, as in [3].

In this paper, we present a BWE approach using phonetic
and speaker dependent information for HB spectral envelope
estimation. The first step employs an HMM model to classify
each speech frame to a specific phoneme type. The second
step finds a speaker specific WB spectral envelope by WB
VTAF shape estimation from the calculated NB VTAF shape.
A new proposed postprocessing step, involving modification
of the estimated WB VTAF, allows better gain adjustment
and smoothing in time of the estimated spectral envelope.

The paper is organized as follows. In Section 2, we de-
scribe the proposed BWE algorithm. In Section 3, we present
some experimental results. Finally, in Section 4, we draw our
conclusions.

2. PROPOSED BWE ALGORITHM

The proposed method for the estimation of the WB speech
signal is described in this section. A general system overview
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Figure 1: Block diagram of the proposed BWE algorithm.

and a block diagram are given first, followed by a detailed
description of the algorithm stages.

2.1 Algorithm Overview

The general BWE algorithm scheme is described in Fig. 1.
The system can be divided into four stages. Stage I carries
out preprocessing and feature extraction. The input to this
stage is the received NB speech signal sxg (1) with sample
index n. The NB speech signal is framed, upsampled and
equalized in the low frequencies. Three sets of feature vec-
tors are extracted from each preprocessed frame of the re-
ceived signal: Frequency-based features, X1, for speech-state
estimation; NB VTAF feature vector, x5, for WB VTAF esti-
mation, and NB excitation, xg, for WB excitation generation.

In Stage II of the algorithm, the estimation of the WB
spectral envelope ¢ws (k), with frequency index k, is per-
formed. It is calculated in a three-step process. In the first
step, speech state estimation yields the probability of being
in a specific speech-phoneme related state. The WB VTAF,
Awn, is then estimated, in the second step, from the calcu-
lated NB VTAF. Postprocessing of the estimated WB VTAF,
in the third step, allows better gain adjustment and smoothing
in time of the estimated WB spectral envelope.

In Stage III of the algorithm, the WB excitation, Uwg (k)
is generated. The HB excitation is generated using a sim-
ple spectral copy of the calculated NB excitation. In the last
stage of the algorithm, Stage IV, the output WB speech sig-
nal §wp (n) is synthesized in the frequency domain, without
changing the received NB signal.

2.2 Detailed Algorithm Description

2.2.1 Stage I: Preprocessing and Feature Extraction

The received NB speech signal is segmented into frames
of 20msec duration, with 10msec overlap between frames.

The speech frame is upsampled to 16 kHz sampling rate
and filtered through a LPF with 4 kHz cutoff frequency and
10dB boost at 300 Hz. The 10dB boost equalizes a typical
telephone channel filter response [1], which attenuates the
speech signal at and below 300 Hz. This equalization adds
naturalness to the NB signal. The equalized frame is then
windowed using a Hamming window.

Three sets of features are extracted from the upsampled
and equalized speech frame. The purpose of the first feature
vector, X7, is to allow good separation of different speech
classes that give different HB spectral envelope shapes [14].
The feature vector x; € R'3 consists of the following fea-
tures:

e Mel Frequency Cepstral Coefficients (MFCC) of nine
subbands from 300 to 3400Hz. The MFCC are com-
monly used in speech recognition algorithms. They were
shown to have high NB to HB speech mutual information
and to provide good class separation [8].

e Spectral centroid of the NB power spectrum, which is
generally high for unvoiced sounds [15].

o A spectral flatness measure [15] that indicates the tonal-
ity of the speech signal.

e Spectral slope, which is useful for discriminating voiced
frames from sibilants and plosives [7].

e Normalized frame energy [9].

The second feature vector, X2, contains the area coeffi-
cients that represent the speaker’s VTAF shape. The area
coefficients are calculated from the reflection coefficients as
described in [2]. Since the preprocessed NB frame is up-
sampled to 16 kHz, we use Ny = 16 area coefficients for NB
VTAF calculation.

The last extracted feature vector, x3, is the NB excita-
tion, which is calculated in the frequency domain by divid-
ing the NB signal spectrum by the NB spectral envelope sig-
nal. A fast Fourier transform (FFT) of length 512 is used
for frequency domain signals calculation from the upsampled
frame.

2.2.2 Stage II: WB Spectral Envelope Estimation

The estimation of the WB spectral envelope is carried out in
three steps. In the first step, the speech state which represents
a specific speech phoneme is estimated using an HMM-based
statistical model. The second step consists of estimating the
WB VTAF shape by a codebook search, using the calculated
NB VTAF shape. Postprocessing of the estimated WB VTAF
is conducted in the last step, to reduce possible artifacts due
to estimation errors in the previous steps.

The HMM statistical model was trained offline using the
TIMIT transcription. Each frame was associated with a state
Si(m), i =1,...,Ns, which represents a speech phoneme,
where i is the state index, NN, is the number of states and m
is the current frame time index. The following probability
density functions (PDFs) were calculated:

e p(S;) - Initial probability of each state.

o p(Si(m)|S;j(m—1)) - Transition probability of the
Markov chain from state j to state i.

e p(x1|S;) - Observation probability for each state. This
probability is approximated by GMM parameters with
Ng mixtures, which are estimated for each state by the
expectation-maximization (EM) algorithm [9].
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The state probabilities for an input speech frame are ex-
tracted from the a-posteriori PDF. We denote the observa-
tion sequence of the first feature vector x; up to the cur-
rent frame as X (m) = {x1(1),x1(2),...,x1(m)}. The
conditional probability p(S;(m)|X; (m)) expresses the a-
posteriori probability. It is recursively calculated for each
state by

(81 m) X (m)) = Ci - p (1 (m) I )
X p(Sim)[s;(m=1)) p(s0n =D Xa o =1)) D

where C; is a normalization factor to allow all the state prob-
abilities to sum up to one [10]. Choosing the state with the
highest a-posteriori probability yields a hard-decision for the
current speech frame linguistic content.

Now, we wish to estimate a suitable WB spectral enve-
lope for the estimated speech state. For this purpose we
estimate the speaker’s VTAF shape. As the VTAF shape
models the physical speech production system, we wish to
find the closest WB VTAF shape to the calculated NB VTAF
shape. We use a second statistical model that incorporates
a set of WB VTAF codebooks (CBs). For each of the N
states, we have a CB with Ncg entries. The CBs were trained
offline with real WB VTAF data using the Linde, Buzo, Gay
training (LBG) algorithm [1]. We denote the calculated NB
VTAF as Anp and the CB entries corresponding to the esti-

mated state S; as Af,"VB (j), j=1,...,Ncg. The optimal WB

VTAF A%"VB for the estimated state in frame m is picked
by minimizing the Euclidean distance between Anp and

Si . . .
AWB(J)a Jj=1,...,Ncs :

A Si Si .
Awp =Awg (J77),

2)

Ncs

jort = arg;jn:i? log(Ang (m)) —log (Ai}VB (J)) Hj

In-order to reduce artifacts due to erroneous state estimation,
we use Npe states with the highest a-posteriori probability
Pl,- -y PNpey for WB VTAF estimation

_S

~ =S ,
Aws =G - <p1 At DN -Aﬁ‘;;ﬂ) NG

where C, is a normalization factor to constrain the highest
Npest probabilities to sum up to one.

After this step we have an initial WB VTAF estimation,
Ay This estimated WB VTAF is further processed to al-
low better spectral envelope gain adjustment and smoothing
in time. Better gain adjustment can be achieved by fitting
the lower band of the estimated WB spectral envelope to the
calculated NB spectral envelope. Better smoothness in time
can be achieved by reducing time discontinuities of estimated
WB spectral envelopes. The postprocessing step is fully de-
scribed in the remainder of this sub-section. Fig. 2 presents
the block diagram of the proposed postprocessing.

We denote the formant frequencies of the NB and the es-
timated WB spectral envelopes by fyp and fywp, respec-
tively. The shape fitting of the estimated WB spectral en-
velope is conducted by tuning the lower subset of fyyp to
fns. The tuning is done iteratively by perturbing the WB

VTAF area coefficients [16]. The iterative tuning process is
conducted only in voiced speech frames, as those frames are
characterized by strong NB formant frequencies.

The VTAF is perturbed by using a sensitivity function.
The sensitivity function relates small changes in VTAF to
changes in formant frequencies. We denote the VTAF val-
ues by A,,, na = 1,...,Ny, where N, is the number of area
coefficients. The spectral envelope formant frequencies are
denoted by f,,f7 ng=1,...,Ny, where Ny is the number of

formant frequencies. The sensitivity function Sy, », satisfies
the following relationship:
Afy, U AA
N Z S —na 4)
- ng,na )
f nf np=1 A"A

where Afy is the difference between the desired formant fre-
quency and the current formant frequency, and AA,,, is the
perturbation size of the area number n4. A vector form of (4)
is:

Affyya] = S, - AR
T )
palan Ay AL (s Myl
Af_[fll,..,,fo] ,AA_[A117...,ANAA} .

The sensitivity function is calculated by measuring the for-
mants frequencies deviation due to small area changes using
4).

The goal of each iteration is to minimize the difference
between the calculated and estimated NB formant frequen-
cies. The formant frequencies are obtained by spectral en-
velope peak picking. The VTAF perturbation is solved from
(5) by:

A _qf
AA[NAXI] - S[NAfo] -Af

e (6)
where ST is the Moore-Penrose pseudo-inverse of S. This
solution minimizes the ¢ norm of AA when N 1 < Nj. This
criterion allows minimal area changes that give the desired
formant frequencies changes. The pseudo-inverse of the
sensitivity function matrix is calculated using the singular
value decomposition (SVD) technique. Once AA is calcu-
lated, the perturbation size for each VTAF area coefficient
is AA,, = AA, u A A new estimate of the WB VTAF is
obtained by:

np -

~ - ~
AGE=Awp+tAAyg , @)

where [ is the iteration number and AAWB =
T
[AAy,...,AApN,]".

The stopping condition for the iterative process is the

reaching of an allowed deviation, Afy, between fiyg and

the corresponding lower subset of fyyg. No improvement in
the frequencies deviation may imply a convergence problem
and a large estimation error of the spectral shape. Hence,
the estimated WB VTAF is updated only when the average
frequencies deviations in the current iteration is smaller than
that of the previous iteration. On average, 3.6 iterations were
performed for each processed frame using Afy = 50 Hz.
When the described iterative process is finished, the re-
sult is a WB spectral envelope that its lower band is close to
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Figure 2: Block diagram of the proposed postprocessing
step.

the NB spectral envelope in terms of its NB formant loca-
tions. Now, the estimated WB VTAF shape should be further
processed to reduce possible artifacts and further improve the
speech quality. This is done by smoothing in time and gain
adjustment of the final estimated WB VTAF.

Smoothing in time is performed on the estimated WB
VTAF under the assumption of physical continuity of vocal
tract shape in time. Smoothing is done recursively by:

Awp(m)=B-Ayg(m—1)+(1-B)-Aws(m), (8)

where 8 = 0.7 for voiced frames and 8 = 0.5 for unvoiced
frames.

Gain adjustment is performed by first converting the
smoothed estimate of the WB VTAF to a WB spectral en-
velope, as described in [2]. The calculated WB spectral en-
velope can now be gain adjusted to match the energy of the
input NB spectral envelope in its lower band [3].

2.2.3 Stage Ill: WB Excitation Generation

HB excitation generation is based on spectral copying of the
NB excitation. The NB excitation in the transition band be-
tween 2.2-3.4 kHz is used repeatedly to fill the HB missing
frequencies. This simple method allows keeping the original
NB excitation signal untouched and filling all the missing HB
frequencies with an excitation signal without any gap.

2.2.4 Stage IV: WB Speech Synthesis

The estimated final WB spectral envelope is used to shape
the generated excitation in the frequency domain. This pro-
vides a HB speech component that is then concatenated in
the frequency domain to the original NB signal to create
the estimated WB signal. The time-domain speech frame
is calculated from the obtained BWE signal transform us-
ing the inverse fast Fourier transform (IFFT). Two sequential
time frames are combined by the overlap-add method using
a Hann synthesis window.
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Figure 3: Average log spectral distortion for different
phoneme categories.

3. PERFORMANCE EVALUATION

To evaluate the algorithm performance, objective quality
measurements were used. The proposed algorithm was im-
plemented using the following parameters: number of states
N; = 61 (symbols in the TIMIT lexicon), number of Gaus-
sian per state N, = 16 (as in [9]), number of CB entries per
state Ncg = 16, number of VTAF area coefficients Ny = 16
and number of states for VTAF estimation Npes = 3. The
TIMIT WB training database, including 4620 sentences, was
used for training both the HMM and the CB statistical mod-
els. The TIMIT WB test database, including 1680 sentences,
was used as an input to the proposed algorithm after being
preprocessed by a telephone channel filter and down sampled
to 8 kHz. From the BWE processed signals and their original
WB counterparts the following quality measurements were
computed.

The first examined criterion was the Log Spectral Dis-
tance (LSD) measure in different phonetic categories. The
LSD is calculated for the m'" frame by:

knigh 2
1 g P, (k):|
LSD, = | —— 1010, )
knigh — kiow + 1 k:;k)w { $10 Py (k)

where P, is the power spectrum of the original WB frame,
and P, is the power spectrum of the corresponding BWE
frame. The distortion is calculated using the FFT bin indices
from kjqy tO kpigh, corresponding to the frequency range from
4 to 7 kHz. The analysis is performed in frames of 256 sam-
ples (16 ms) using Hamming windowing, with 50% overlap
between successive frames, and an FFT of length 1024.

Our results, in terms of the average LSD over phonemes
in a given class, are compared in Fig. 3 to the results ob-
tained in [7]. The results show improved performance of
the proposed algorithm for all phoneme classes. A major
improvement is obtained for fricative sounds. The results
demonstrate the effectiveness of phoneme dependent estima-
tion of BWE speech frames.

The second evaluation criterion is the formant frequen-
cies error between HB estimated formant frequencies and
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their original counterparts. Formants locations for the same
phoneme may be different for different speakers. For com-
parison reason with [5] a linear predictor of order 14 is used
and the formant frequencies are derived by peak picking in
the spectral envelope. This measure is calculated for voiced
frames in all the test database using the TIMIT transcription.

Our results, are compared in Fig. 4 to the results obtained
in [5]. Each histogram bin has a width of 200 Hz. The results
demonstrate an improvement in formant frequencies estima-
tion using the vocal tract shape modeling and tuning.

4. CONCLUSION

We have presented a new approach for speech BWE involv-
ing both phoneme dependent and speaker dependent estima-
tion of the spectral envelope. A three-step estimation al-
gorithm was developed to deal with common difficulties in
spectral envelope estimation. These difficulties are the es-
timation of unvoiced sounds and the robustness to different
speakers and to erroneous estimation. The phoneme estima-
tion employs an HMM to estimate the phonetic content of a
speech frame. The spectral envelope estimation relies on a
CB searching to estimate the speaker’s VTAF. Postprocess-
ing of the initial estimated WB VTAF, by matching formant
frequencies in the low band to those of the input NB speech,
smoothing in time, and gain adjustment, improved the HB
spectral envelope estimation.

The experimental results demonstrate the improved per-
formance of the proposed algorithm compared to other meth-
ods. Informal listening tests show improved quality of the
enhanced speech. The drawbacks of the proposed algorithm
are twofold. First, the concatenated tube model is limited in
modeling VTAF shape of unvoiced and nasal sounds. Sec-
ond, the iterative postprocessing procedure and the online
sensitivity function calculation require high computational
complexity. Future work might include a different VTAF es-
timation technique for unvoiced and nasal sounds. Offline
calculation of the sensitivity function, for each WB VTAF
codeword, will reduce the computational complexity. The al-
gorithm should also be evaluated using formal listening tests,
under different background noise conditions.
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