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ABSTRACT

In this paper, we present a subband adaptive filter which
selects a subset of subbands and utilizes them in updating
the adaptive filter weight. The NSAF algorithm has a trade-
off between the number of subbands and convergence speed.
The proposed algorithm, thus, increases the number of sub-
bands to acquire improved convergence speed. However, em-
ploying an increased number of subband filters raises com-
putational complexity. We use only a subset of extended
subbands so as not to have redundant computational com-
plexity, while we maintain performance. To minimize per-
formance degradation from the extended subbands, we show
that the larger ratio of the corresponding squared error to an
input power should be selected through a geometric interpre-
tation. Throughout the experiments, we show that the pro-
posed NSAF algorithm has good convergence performance
compared with the conventional NSAF algorithm.

1. INTRODUCTION

The normalized least mean-square (NLMS) is one of the
most popular and widely used adaptive filtering algorithms
because of its simplicity and robustness. However, its de-
fect is that correlated input signals significantly deteriorate
its convergence behavior [1, 3]. To solve this problem, var-
ious approaches have been presented such as recursive least
squares (RLS) [1, 3], affine projection algorithm (APA) [4],
and subband adaptive filtering (SAF) [5, 8]. Among these,
the SAF algorithm allocates the input signals and desired re-
sponse into almost mutually exclusive subbands. This “re-
whitening” delayless structure of SAF allows each subband
to converge almost separately so the subband algorithms ob-
tain faster convergence behavior. Lee and Gan presented the
normalized SAF (NSAF) algorithm in [9] to improve conver-
gence speed with almost the same computational complexity
as the NLMS algorithm.

The NSAF algorithm, however, has enormous compu-
tational complexity when the number of taps is long such
as when using network and acoustic echo cancelation appli-
cations. To reduce computation and to acquire faster con-
vergence performance, several selective partial update algo-
rithms have been proposed [10,12]. Courville’s approach in-
corporates the fullband weight model in each subband, cop-
ing with the structural problems [13]. The selective partial
update algorithms update a selected subset of the filter coeffi-
cients. Abadi has applied these methods to the SAF to create
simplified selective partial-update subband adaptive filtering

(SSPU-SAF) algorithms [14]. Also, the NSAF shows that the
number of subbands is closely related to the filter behavior
and computational burden [9]. Therefore, Kim’s algorithm
adaptively changes the number of subbands at every iteration
using this characteristic [15].

In this paper, we propose a selective subband scheme that
improves the performance of the NSAF. The proposed algo-
rithm enlarges the number of subbands and selects the most
effective subset of subbands. The optimal subband selec-
tion criterion can be derived by using the principle of min-
imum disturbance between successive filter coefficients. We
demonstrate that the proposed algorithm is much faster than
the conventional NSAF algorithm while having a little bit
lower computational complexity. In addition, we show that
the proposed algorithm with doubled subbands has a better
convergence rate than conventional NSAF when they have
almost the same computational complexity.

This paper is organized as follows: In Section 2, we re-
view NSAF and formulate the proposed algorithm. Section 3
contains the experimental results, which illustrate the conver-
gence performance of the proposed algorithm, and Section 4
presents the conclusion.

2. SELECTIVE SUBBANDS NSAF (SS-NSAF)

Consider a desired signal d(k) that originates from an un-
known linear system

d(k) = u(k)wo + v(k), (1)

where wo is an unknown column vector to be identified with
an adaptive filter, v(i) corresponds to measurement noise

with zero mean and variance σ2
v , and u(n) denotes a row

input (regressor) vector with length M as follows:

u(k) = [u(k) u(k− 1) · · · u(k−N+ 1)]. (2)

2.1 Conventional NSAF

Fig. 1 shows a subband structure with the desired response
d(k). The filter output y(k) is partitioned into M subbands
by means of L-tap analysis filters H1(z), · · · ,HM(z). These
subband signals, di(k) and yi(k) for i = 1, · · · ,M are criti-
cally sub-sampled to a lower rate commensurate with their
bandwidth. Let w(k) be an estimate for wo at time index
k. The decimated subband error signal is then defined as
ei,D(n) = di,D(n)−ui(n)w(n) where

ui(n) = [ui(nM),ui(nM− 1), . . . ,ui(nM−N + 1)]. (3)
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Figure 1: Structure of the NSAF

Note that the variable is indexing the original sequences, and
n is used to index the decimated sequences. NSAF minimizes
the squared Euclidean norm of the change in the tap-weight
vector

min
w(n+1)

‖w(n+ 1)−w(n)‖2
(4)

subject to the M constraints

di,D(n) = ui(n)w(n+ 1). (5)

Using the Lagrange multipliers method, the cost function
to be minimized is given by

J(n)= ‖w(n+ 1)−w(n)‖2+
M

∑
i=1

λi(di,D(n)−ui(n)w(n+1))

(6)
To minimize the cost function, the differentiation J(n) should
be zero. Thus, the differentiation of J(n) is

∂J(n)

∂w(n+ 1)
= 2(w(n+ 1)−w(n))+U(n)Λ (7)

where, U(n) = [uT
M(n) uT

M−1(n) · · · uT
1 (n)],

ui(n) = [ui(nM) ui(nM − 1) · · · ui(nM − N + 1)] and

Λ= [λM λM−1 · · · λ1]
T .

w(n+ 1)−w(n) =
1

2
U(n)Λ (8)

when, Λ = 2(UT (n)U(n))−1e(n) and e(n) = [eM,D(n)
eM−1,D(n) · · · e1,D(n)]

T . The update equation becomes

w(n+ 1) =w(n)+
1

2
µU(n)UT (n)U(n))−1e(n) (9)

where µ is a step-size parameter.
If the frequency responses of the analysis filters do not

significantly overlap, the “pre-whitening” effect of SAF will

Table 1: Computational complexity of NSAF and SS-NSAF

Conventional
SS-NSAF

NSAF

Multiplication 2N + 3ML (1+ r)N + 3MeLe

Division - Me

Comparison - 2log2Me

guarantee the decorrelation of input signals. In a mathemat-
ical approach, the matrix product UT (n)U(n) can be sim-
plified as a diagonal matrix. Finally, the update equation of
NSAF [9] can be written as

wNSAF(n+ 1) =w(n)+ µ
M

∑
i=1

uT
i (n)

‖ui(n)‖2
ei,D(n). (10)

Geometrical representation of the decorrelated input sig-
nals is the orthogonality of the input hyperplane in Fig. 2.
SAF will update the tap-weight to the intersection of input
hyperplanes (w(n+ 1)) and the simplified update will up-
date M times separately (wNSAF(n+ 1)). It is easily figured
out that the two update results are almost the same in the
geometric interpretation.

2.2 Optimization of Selecting the Subband Filters

Our objective is to optimize the subband selection by em-
ploying only a subset of extended subbands at every iteration
while increasing the usage of subbands. From this, we ex-
pect that the Selective Subband (SS-NSAF) algorithm has a
fixed rate of subband usage to achieve a similar level of com-
putational complexity to that of conventional NSAF. Sup-
pose that the NSAF algorithm has an increased number of
subbands Me > M and we select K subbands out of Me sub-
bands. There will be a subset of subbands that maximize the
convergence rate with a restricted number of subbands. Let
TK = {t1, t2, · · · , tK} denote K–subset (subset with K mem-
bers) of {1,2, · · · ,Me}. That is, ti denotes the index of the
selected subbands. Since the reduction of the computational
complexity and the convergence rate depend on the relative
size of K and Me, we introduce the selection ratio r = K/Me.
For r = 1,Me = M, the SS-NSAF becomes identical to the
conventional NSAF in (10). If the selection ratio r is large,
the computational complexity would increase but the con-
vergence performance would improve. So as not to increase
computational complexity additionally, r would be fixed as a
dependent number of Me. First, we have to know the compu-
tational complexity of conventional algorithm which is illus-
trated in [10]. Computational complexity of proposed algo-
rithm, which is shown in 1, can be acquired from the equa-
tion.An appropriate r is easily calculated from the inequality
of the computational complexity in Table 1

r ≤ 1−
3(MeLe −ML)

N
. (11)

The following part will describe the method that minimizes
the convergence performance deterioration with the fixed r
and Me.
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Figure 2: Weight update example of the proposed algorithm
for N=2, Me=2, r=1/2.

Our approach is to seek the subset TK that minimizes the
performance degradation compared to the NSAF using Me

subbands. From (10), we can see the update value is the
independent summation of the M-subband. The proposed
algorithm updates only K-subbands using TK . Substituting
UK(n)= [uT

t1
(n) uT

t2
(n) · · · uT

tK
(n)] to U(n) in (10), we can

derive the update equation of the proposed algorithm as

wK(n+ 1) =w(n)+ µ
K

∑
i=1

uT
ti
(n)

‖uti(n)‖
2

ei,D(n). (12)

If we assume that the correlation of ui(n) vanished because
of the pre-whitening effect, from equation (12), we can easily
derive

‖wK(n+ 1)−w(n)‖2 = µ2
K

∑
i=1

e2
ti,D

(n)

‖uti(n)‖
2
. (13)

For a more qualitative understanding of the optimal sub-
bands selection, we adapt the geometric interpretation in Fig.
2. By the Pythagorean theorem, we can write the squared a
posteriori errors for K subbands as

‖wK(n+ 1)−w(n+ 1)‖2 = ‖w(n+ 1)−w(n)‖2

−‖wK(n+ 1)−w(n)‖2 . (14)

Substituting (13) into (14), we get

‖wK(n+ 1)−w(n+ 1)‖2 = ‖w(n+ 1)−w(n)‖2

−µ2
K

∑
i=1

e2
ti,D

(n)

‖uti(n)‖
2
. (15)

As we can see in Fig.2, wK(n+1), which makes (13) big-
ger, is closer to w(n+1) among Me candidates of wK(n+1).
That is, the bigger (13) guarantees the faster convergence
speed. In other words, when (13) is the maximum value
among all K–subsets and the a priori weight error vector
given, the norm square of the a posteriori weight error vec-
tor is minimized. To find the fastest solution of K–subsets,

the proposed algorithm updates the weight vector so as to
maximize the square deviation decrease among all possible
K–subsets.

argmax
TK

K

∑
i=1

e2
ti,D

(n)

‖uti(n)‖
2

(16)

It is easily noticed that (16) is the sum of the square de-
viation decrease of each subband. To select the set TK that
maximizes the convergence rate of the proposed algorithm,
we first perform reordering of the subbands according to the
size of e2

ti,D
(n)/‖uti(n)‖

2 for each subband.

Me

∑
i=1

e2
ti,D

(n)

‖uti(n)‖
2
=

e2
t1,D

(n)

‖ut1(n)‖
2
+

e2
t2,D

(n)

‖ut2(n)‖
2
+ · · ·+

e2
tMe ,D

(n)

‖utMe
(n)‖2

(17)
for TM = {t1, t2, · · · , tMe}. By selecting the subbands which

have the biggest e2
ti,D

(n)/‖uti(n)‖
2 in a row in TM, we can

say that the proposed algorithm selected the optimal sub-
bands that maximize the convergence speed. Thus, the MSD
decrease of the proposed algorithm will be

K

∑
i=1

e2
ti ,D

(n)

‖uti(n)‖
2
=

e2
t1,D

(n)

‖ut1(n)‖
2
+

e2
t2,D

(n)

‖ut2(n)‖
2
+ · · ·+

e2
tK ,D

(n)

‖utK (n)‖
2
.

(18)
The proposed NSAF incorporates the selection of the

subband to select the subset of subbands associated with K
values for every update, which makes the maximum value of
(18) with the subset TK of {1,2, · · · ,Me}. Finally the pro-
posed NSAF update equation is

wK(n+ 1) =wK(n)+ µ
K

∑
i=1

uT
ti
(n)eti,D(n)

‖uti(n)‖
2

. (19)

where TK = {t1, t2, · · · , tK} and 1 ≤ K ≤ Me.
For every input sample, the additional computations

for the proposed SS-NSAF algorithm are Me divisions and
2log2 Me sorting operations per iteration using the SORT-
LINE algorithm [17]. Even though division usually requires
much more computation than multiplication, accurate and
complex divisions are unnecessary because the divisions are
just for comparison.

3. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed algorithm by
carrying out computer experiments in a channel estimation
configuration in which the 1024 tap unknown channel is ran-
domly generated. The adaptive filter and the unknown chan-
nel are assumed to have the same number of taps. The in-
put signal u(i) is obtained by filtering a white, zero-mean
Gaussian random sequence through a first-order autoregres-
sive system

G(z) =
1

1− 0.9z−1
. (20)

As a result, a highly correlated Gaussian input signal is
obtained. The signal-to-noise ratio (SNR) is calculated as

SNR = log10

(

E
[

y2(n)
]

/E
[

v2(n)
])

(21)

where y(n) = woui(n). The measurement noise v(n) is
added to y(n) with SNR=30dB. The step size is set to µ = 1.
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(a) NSAF (M=8)

(b) NSAF (M=4)

(c) SS−NSAF (r=7/8, Me=8)
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Figure 3: Normalized MSD curves of the NSAF (M = 4,8)
and the SS-NSAF (Me = 8,r = 1/8,4/8,7/8).

The experimental results are obtained by taking the ensem-
ble average of normalized MSD, E

[

‖wo −w(n)‖2
]

/‖wo‖2

over 100 independent trials. The cosine-modulated filter
banks [16] with subband numbers M = 4 and Me = 8 are
used in the experiments. The length of the prototype filter L
and Le are 32.

Fig. 3. demonstrates the normalized MSD performance
comparison of the proposed SS-NSAF algorithm and con-
ventional NSAF for various selection ratios r with fixed Me.
For the purpose of watching the trade-off, r = 1/8,4/8 and
7/8 are applied to the proposed NSAF. These proposed SS-
NSAF algorithms have different computational complexity
based on Table1. The graph of r = 1/8, which has the lowest
computational complexity, shows that a small number of sub-
bands degrades the convergence speed. The graph of r = 4/8
and r = 7/8, which have the highest computational complex-
ity, show similar performance to the graph of NSAF (M = 8).
This result shows that an overly high selection rate is redun-
dant for optimal subband selection.

Fig. 4. and Fig. 5 illustrate the normalized MSD curves
versus the number of iterations for the conventional NSAF,
the proposed SS-NSAF and an unoptimized selective sub-
band algorithm with colored input signal and white input sig-
nal. These three algorithms have almost the same computa-
tional complexity. The number of subbands is set to Me = 8
and the selection ratio for the SS-NSAF is set to r = 4/8.
Both selective algorithms are faster than the conventional
NSAF. The selective subband algorithm with random sub-
band selection cannot expect high convergence speed but the
proposed algorithm greatly enhanced the convergence rate.
This result shows that the optimal subband selection of the
proposed algorithm is valid. Fig. 5. shows that the proposed
algorithm also performs well with various input signal con-
dition, such as, white input signal.

Fig. 6. illustrates the normalized MSD curves versus
number of iterations for the proposed SS-NSAF and conven-
tional NSAF for varying channel. The number of subbands
is set to Me = 8 and the selection ratio for the SS-NSAF is
set to r = 4/8. In this figure, the conventional NSAF is ro-
bust to varying channel conditions. The proposed algorithm
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Figure 4: Normalized MSD curves of the conventional
NSAF (M = 4), the proposed NSAF and random subband
selection (Me = 8,r = 4/8).
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Figure 5: Normalized MSD curves of the conventional
NSAF (M = 4), the proposed NSAF and random subband
selection (Me = 8,r = 4/8) for white input signal.

is also robust to channel estimation though the channel sud-
denly changes.

A more specific number of computations is as follows.
The NSAF algorithm requires 2432 multiplications while the
proposed algorithm requires only 2304 multiplications, 8 di-
visions, and 6 comparisons for every iteration . These num-
bers show that the proposed algorithm is a little less complex
than the conventional algorithm, while the proposed algo-
rithm has much faster convergence speed.

4. CONCLUSIONS

We have presented the SS-NSAF, which has faster conver-
gence speed than the conventional NSAF. The proposed al-
gorithm performed better than the conventional algorithm by
the increasing the number of subbands and removing ad-
ditional computational complexity by selecting an effective
subset of subbands at every iteration. Optimization of sub-
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(a) Conventional NSAF (M=8)

(b) Proposed Algorithm (r=4/8, Me=8)
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Figure 6: Normalized MSD curves of the conventional
NSAF (M = 8) and the proposed NSAF (Me = 8,r = 4/8)
for varying channel experiment setups.

band selection made it possible for the SS-NSAF to follow
the performance of extended NSAF. The optimal selection
of subbands was derived from comparing the distance be-
tween the extended updated tap-weight and the proposed tap-
weight. As a result, the proposed algorithm has comparable
convergence performance with slightly less computational
complexity than the conventional NSAF.
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