
JOINT SPARSE SIGNAL ENSEMBLE RECONSTRUCTION IN A WSN USING
DECENTRALIZED BAYESIAN MATCHING PURSUIT

George Tzagkarakis1, Jean-Luc Starck1 and Panagiotis Tsakalides2

1 CEA/DSM, SEDI-SAP, Service d’Astrophysique, Centre de Saclay, F-91191 Gif-Sur-Yvette cedex, France
2 Institute of Computer Science (ICS) - Foundation for Research & Technology - Hellas (FORTH), Crete, Greece

Fax: + (33) 169086577, Email: {georgios.tzagkarakis, jstarck}@cea.fr, tsakalid@ics.forth.gr

ABSTRACT
Wireless networks comprised of low-cost sensory devices have been
increasingly used in surveillance both at the civilian and military
levels. Limited power, processing, and bandwidth resources is a
major issue for abandoned sensors, which should be addressed to
increase the network’s performance and lifetime. In this work, the
framework of compressive sensing is exploited, which allows ac-
curate recovery of signals being sparse in some basis using only
a small number of random incoherent projections. In particular, a
recently introduced Bayesian Matching Pursuit method is modified
in a decentralized way to reconstruct a multi-signal ensemble ac-
quired by the nodes of a wireless sensor network, by exploiting a
joint sparsity structure among the signals of the ensemble. The pro-
posed approach requires a minimal amount of data transmissions
among the sensors and a central node thus preserving the sensors’
limited resources. At the same time, it achieves a reconstruction
performance comparable to other distributed compressive sensing
methods, which require the communication of a whole set of mea-
surements to the central node.

1. INTRODUCTION

In many modern signal processing applications sampling is a key
concept largely dominated by the long-term trend of the classi-
cal Nyquist’s theorem. However, the high-resolution capabilities
of modern sensing devices require high sampling rates resulting in
ever increasing amounts of data, thus making compression a neces-
sity prior to storage or transmission. Several seminal studies [1, 2]
have shown that many natural signals result in a highly sparse rep-
resentation when they are projected on localized orthonormal bases
(e.g., wavelets and sinusoids). Subsequently, compressing a sparse
signal reduces in computing its transform coefficients resulting in a
small number of large amplitude coefficients.

Compressive sensing (CS) provides a framework for simultane-
ous sensing and compression [3], enabling a potentially significant
reduction in the sampling and computation costs at a sensor with
limited capabilities. According to the theory of CS, a signal having
a sparse transform representation can be reconstructed from a small
set of incoherent random projections.

Let Ψ ∈ RN×N be a matrix whose columns correspond to a
transform basis. In terms of signal approximation it has been
demonstrated [3, 4] that if a signal f ∈ RN is L-sparse in basis Ψ
(meaning that the signal is exactly or approximately represented
by L elements of this basis), then it can be reconstructed from
M = O(L log(N/L)) non-adaptive linear projections onto a sec-
ond measurement basis, which is incoherent with the sparsity basis.
The general noisy measurement model in the sparsifying transform-
domain is written as

g = ΦΨT f +η = Φw+η , (1)

where g ∈ RM is the measurement vector, Φ = [φ1, . . . ,φM ]T ∈
RM×N is the measurement matrix with φm ∈ RN being a random
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vector with independent and identically distributed (i.i.d.) compo-
nents, w denotes the sparse vector of transform coefficients, and η

is a noise term with bounded energy and unknown variance. Exam-
ples of measurement matrices, which are incoherent with any fixed
transform basis with high probability (universality property [3]), are
random matrices with i.i.d. Gaussian or Bernoulli entries. Besides,
in the following we restrict ourselves to the case of additive white
Gaussian noise (AWGN).

By employing the M compressive measurements and given the
L-sparsity property in the transform basis, the original signal can
be recovered by taking a number of different approaches. The
majority of these solve constrained optimization problems, where
commonly used techniques are based on convex relaxation [4] and
greedy strategies (e.g., Orthogonal Matching Pursuit (OMP) [5]).
On the other hand, in recent studies [6, 7, 8] the problem of re-
constructing a sparse signal from a highly reduced number of com-
pressed measurements was treated in a Bayesian framework. In par-
ticular, given g, and under a prior belief that w should be sparse, the
objective is to formulate a posterior probability distribution for w
and then seek for its maximum. This approach improved the accu-
racy over the previous norm-based CS techniques by providing not
only a single signal estimate, but also the associated confidence in-
tervals (error bars) in the approximation of w (and subsequently of
f ), which are then used to refine the previous estimate with the goal
of reducing the reconstruction uncertainty.

As the field of mobile computing and communication advances,
so does the need of deploying a distributed, ad-hoc wireless sensor
network (WSN) consisting of hundreds of sensors for spatiotempo-
ral monitoring of a specific phenomenon in an area (sensor field) of
interest. The fact that the sensor data are collected at distinct spatial
locations necessitates the requirement for in-network communica-
tion and local information processing. This, in conjunction with the
limited energy and bandwidth resources, makes the development of
methods that extract relevant information about the sensor field, us-
ing as fewer measurements as possible, a challenging task.

The theory of distributed compressive sensing (DCS) [9] ex-
ploits intra- and inter-signal correlations. In a typical DCS setting,
the sensors of a WSN measure signals that are each individually
sparse in some basis. Each sensor independently compresses its
signal by projecting it onto an incoherent basis and then transmits
the associated information to a fusion center (FC), where under the
right conditions one can reconstruct jointly all the signals.

In the present work, we develop a decentralized CS algorithm
for reconstructing an ensemble of signals characterized by a joint
sparsity structure, which are also corrupted by AWGN, in such a
way that we achieve significant savings with respect to the amount
of information that must be handled and communicated by each
sensor. For this purpose, a recently introduced Bayesian Matching
Pursuit algorithm [7] is modified and extended in a DCS framework
by employing a suitable tree-structured scheme.

The rest of the paper is organized as follows: in Section 2, the
joint sparsity structure of the signal ensemble is described and pre-
vious DCS algorithms are reviewed in brief. In Section 3, the pro-
posed decentralized CS estimation of the sparse signal ensemble is
analyzed in detail. In Section 4, the performance of the proposed
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method is compared with the performance of recent DCS methods,
while in Section 5 conclusions are drawn along with directions for
future work.

2. STATISTICAL SIGNAL ENSEMBLE MODEL UNDER A
JOINT SPARSITY STRUCTURE

Due to the equivalence between the time-domain representation of
a signal f and its transform-domain counterpart w, without loss of
generality we consider that the noisy CS measurements are acquired
in the transform domain.

In this work, we employ the generalized notion of an ensem-
ble of signals being jointly sparse in some basis. We consider the
following joint sparsity model for a WSN consisting of J sensors:

g j = Φ jΨ
T f j

(w j=ΨT f j)= Φ jw j +η j , j ∈ {1, . . . ,J} , (2)

where Φ j is the measurement matrix of the j-th sensor and η j is
the associated noise component. Assuming that Φ j is known, the
quantities to be estimated, given g j, are the sparse weight vectors
w j and the noise variances σ2

η j
.

The joint sparsity stands for the fact that all vectors {w j}J
j=1

are L-sparse with their corresponding L non-zero coefficients placed
at the same positions. That is, each w j is supported on the same
subset ϒ ⊂ {1,2, . . . ,N} with card(ϒ) = L (where card(·) denotes
the cardinality of a set). Also, in general, each matrix Φ j in (2) may
be of different dimension M j×N from sensor to sensor, where M j
is the number of CS measurements acquired by the j-th sensor. In
the following, we consider for convenience that all sensors receive
the same number of measurements M j = M, j = 1, . . . ,J.

A real-world scenario well-described by the above model is
when the sensors of a WSN acquire the same signal but with phase
shifts and attenuations due to the signal propagation. In many cases
it is critical to recover each one of the sensed signals f j , such as in
acoustic localization and array processing.

Working in a Bayesian framework, the sparse vector w j, as
well as the noise component η j in (2) are random vectors. The
use of a Gaussian mixture as a sparsity-enforcing prior for the un-
known vector w is a common choice, due to its convenience in
the subsequent statistical inference yielding closed form expres-
sions and computationally efficient implementations. In the fol-
lowing derivations, the noise component is drawn from a multi-
variate Gaussian, η j ∼ N (0,σ2

ηI) (we assume that all compo-
nents have the same variance σ2

η ), while the sparsity of w j is mod-
elled by assuming that its components {wn

j}N
n=1 are i.i.d. realiza-

tions of a Gaussian mixture, which is determined by a discrete ran-
dom vector τ = [τ1, . . . ,τN ]T of mixture parameters. For simplic-
ity we assume that τ ∼Bernoulli(λ1), that is, Pr{τn = 1} = λ1 and
Pr{τn =0}=λ0 = 1−λ1, or equivalently λτn ∈ {λ0,λ1}. Thus, we
have the diagonal covariance matrices Σ j(τ j) = diag(σ2

τ1
, . . . ,σ2

τN
),

with σ2
τn
6= 0 or σ2

τn
= 0 depending on whether the n-th component

of w j is significant and activated in the mixture or not, respectively.
Similarly, the mean vectors µ j depend on the same mixture vec-
tor τ j and will be written as µ j(τ j) to denote this dependence. In
general, the components of each Gaussian mixture may be chosen
from a set of Ω Gaussians: µτn ∈ {µω}Ω

ω=1, σ2
τn
∈ {σ2

ω}Ω
ω=1. In

the present study, we consider for simplicity that σ2
τn
∈ {σ2

0 ,σ2
1 },

where σ2
0 = 0 to enforce sparsity, and µτn ∈ {0,µ1}.

3. DECENTRALIZED FBMP FOR JOINT
RECONSTRUCTION OF A SIGNAL ENSEMBLE

In this section, we introduce a decentralized extension of the re-
cently introduced FBMP algorithm [7] for reconstructing an ensem-
ble of sparse vectors {w j}J

j=1 from the corresponding CS measure-
ments {g j}J

j=1 acquired by the J sensors of a WSN. This process
is reduced in finding for each sensor j the sparse set of the most
probable basis configurations (columns of Φ j) associated with the

activated mixture components. Then, their corresponding posterior
probabilities are employed to obtain a Minimum Mean Squared Er-
ror (MMSE) estimate of the sparse vector w j.

In recent works [9, 10, 11, 12], the problem of reconstructing
a signal ensemble with a joint sparsity structure was treated by in-
troducing variants of greedy pursuit CS algorithms or by solving
convex cone problems, which seek to identify the elements of the
sparse support in an iterative way. The joint signal recovery is per-
formed by solving an optimization problem of the form,

min
W
‖W‖1,q s.t. ‖ΦW−G‖F ≤ ε , (3)

where the mixed norm ‖W‖1,q is defined by the sum of the `q-
norms of the rows of W, W = [w1, . . . ,wJ ] and G = [g1, . . . ,gJ ]
denote the overall matrices of the sparse and measurements vectors,
respectively, Φ ∈ RM×N is a measurement matrix, which is com-
mon for all sensors, and ‖A‖F is the Frobenius norm of a matrix A.
In the subsequent evaluations, comparisons with the mixed (1,2)-
norm will be performed by setting q = 2. Notice also that, although
the subsequent derivations of the proposed algorithm consider the
general case of a distinct measurement matrix Φ j for each sensor j,
however for the comparison with previous methods in Section 4 we
will consider the simplified case of a single measurement matrix Φ
for all sensors.

Returning to the proposed decentralized FBMP algorithm
(hereafter called DCS-FBMP), a posterior probability is formed for
a given mixture vector τ j at each sensor j, which is obtained by
applying Bayes’ rule:

p(τ j|g j) =
p(g j|τ j)p(τ j)

∑τ∈T p(g j|τ)p(τ)
, (4)

where T ={0,1}N contains the 2N possible basis configurations.
In the ideal case, a single vector τ∗ would be associated with the
sparsest basis configuration that best describes the data (maximum
posterior). However, in practice there may be additional configu-
rations, that is, vectors τ , which also describe the data g j yield-
ing significant values of the posterior. Let T j,s be the subset of T
containing the vectors τ with the most significant posterior proba-
bilities for the j-th sensor. We expect that the size of T j,s will be
much smaller than the size of T , and thus the posterior probabilities
{p(τ j|g j)}τ j∈T j,s can be estimated from {p(g j|τ j)p(τ j)}τ j∈T j,s ,
since the denominator in (4) is fixed for the j-th sensor. By em-
ploying (2) under the Gaussian assumption for w j and the Bernoulli
prior for τ j, the following mixture selection metric is defined as a
maximum a posteriori (log-MAP) criterion to decide whether to in-
clude a given τ j in T j,s, or not:

ρ(τ j,g j) = ln[p(g j|τ j)p(τ j)] =−
1
2

[
ln |R j(τ j)|+M ln2π

+
(
g j−Φ jµ j(τ j)

)T
R j(τ j)−1(g j−Φ jµ j(τ j)

)]
+

N

∑
n=1

lnλτn ,

(5)

with R j(τ j) = Φ jΣ j(τ j)ΦT
j +σ

2
ηIM×M , j = 1, . . . ,J . (6)

3.1 MMSE estimate of w j

A computationally feasible approximation of the MMSE estimate of
w j using only the most significant posterior probabilities of the j-th
sensor, that is, the discrete vectors τ j corresponding to the largest
values of the selection metric ρ(τ j,g j), is given by:

ŵ j,MMSE , ∑
τ∈T j,s

p(τ|g j)E{w j|g j,τ} , (7)

E{w j|g j,τ}= µ j(τ)+Σ j(τ)ΦT
j R j(τ)−1(g j−Φ jµ j(τ)) . (8)
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3.2 Incremental basis selection via a tree-structure
At the core of the proposed DCS-FBMP approach is the use of an
incremental tree-structured procedure, which is employed in several
machine learning tasks for selecting the most significant basis con-
figurations for the j-th sensor. We emphasize in advance that this
process is only sub-optimal, but efficient enough motivating its use
in a WSN scenario with the limitations mentioned before.

More specifically, a distinct tree is maintained and updated at
each sensor j, with its root consisting of the zero vector τ0

j = 0.
Then, from the nodes of the l-th level of the j-th tree the set T l

j
is formed, which contains the binary vectors τ j generated from the
vectors of the corresponding parent nodes of the previous (l−1)-th
level by “activating” the remaining N−(l−1) zero mixture compo-
nents one-by-one. Next, the values of the selection metric ρ(τ j,g j)
are computed for these new mixture vectors and those with the K
largest values are stored in T l

j,s. The process is repeated until: i)

T
l j,max
j,s is estimated, where l j,max is the maximum number of tree

levels for the j-th sensor chosen such that Pr{‖τ j‖0 > l j,max} is
sufficiently small (‖τ j‖0 is equal to the number of non-zero compo-
nents of τ j), or ii) the value of the selection metric ρ(τ j,g j) for at
least one mixture vector exceeds a predetermined threshold.

When moving from one level of the tree to the next the values of
ρ(τ j,g j) must be updated as a result from the activation of a single
component at a time. For this purpose, let τ j(q) denote the mixture
vector which is identical to τ j except for the q-th component, which
is “activated” (= 1) in τ j(q) (for convenience we will write τ j,q),
while it is “inactive” (= 0) in τ j. We are interested in computing
the inter-level differences

∆
q
j(τ j) = ρ(τ j,q,g j)−ρ(τ j,g j) , (9)

which are then used to decide which mixture components will be
activated. More specifically, the set T l

j,s at the l-th tree-level of
the j-th sensor is formed by keeping the K binary vectors of T l

j
corresponding to the K largest values of ∆

q
j(τ j). Notice that, since

ρ(τ j,g j) is fixed from the previous iteration, the maximization of
∆

q
j(τ j) at the l-th level is exactly equivalent with the maximization

of ρ(τ j,q,g j). The key quantities to be updated are the inverse of
R j(τ j) and its determinant when the q-th component is activated.
These updates are obtained by applying the matrix inversion lemma
and the determinant identity resulting in the following simple incre-
mental expressions:

R j(τ j,q) = R j(τ j)+σ
2
τq

φ j,qφ
T
j,q , |R j(τ j,q)|=

σ2
τq

γ j,q
|R j(τ j)| ,

R j(τ j,q)−1 = R j(τ j)−1− γ j,qv j,qv
T
j,q ,

where γ j,q = σ2
τq

(1+σ2
τq

φ T
j,qv j,q)−1 and v j,q = R j(τ j)−1φ j,q, with

φ j,q denoting the q-th row of Φ j. Notice also that the updated mean
vector µ j(τ j,q) is the same as µ j(τ j) except for a change of its q-th
component from µq = µ0 = 0 to µq = µ1.

Regarding the algorithm’s termination, we use the second from
the two rules defined before, that is, if at least one of the K selection
metric values ρ(τ j,g j) at the l j,m-level search (l j,m ≤ l j,max) ex-
ceeds a predetermined threshold ρT h, the algorithm returns the sub-
optimal set T

l j,m
j,s with the most significant mixture vectors, along

with the associated values of the posterior distribution obtained by
taking the exponent of (5). If this criterion is not satisfied, a new
search starts and proceeds by ignoring all the previously explored
nodes of the tree. The algorithm continues until the thresholding
criterion is satisfied, or until a maximum number of searches, Smax,
is reached.

3.3 WSN topology for joint reconstruction
The implementation of a typical DCS method requires all the J sen-
sors of the WSN to transmit their corresponding CS measurements

{g j}J
j=1 to a central node (FC), where the joint reconstruction of

w j, j = 1, . . . ,J, takes place. In this case, the cost that dominates
the whole process is the communication cost spent by each sensor
to transmit its CS measurements to the FC. Besides, it is usually as-
sumed that the FC is placed far enough from the sensor field, such
that the transmission energy spent by each sensor is approximately
equal for all sensors.

Despite the already reduced number of CS measurements, when
compared with the original signal dimensionality, the proposed
DCS-FBMP scheme achieves a further reduction of the amount of
information to be communicated by the sensors of the WSN. Let A l

j
denote the set of indices of the “active” (non-zero) components of a
mixture vector corresponding to the l-th level of the tree structure of
sensor j. That is, A l

j =
{

n∈{1,2, . . . ,N}|τ l
j(n) 6= 0

}
, l = 1, . . . , l j,m

(l j,m ≤ l j,max), j = 1, . . . ,J, where τ l
j is the mixture vector obtained

at the l-th level. As it was described above, when moving from
one level of the tree to the next, τ l

j is updated by activating a sin-
gle mixture component. Consequently, if we assume that the q-th
component is activated, the set of “active” indices A l

j is updated as:

A l+1
j = A l

j ∪{q} ,q ∈ {1,2, . . . ,N}\A l
j . Due to the joint sparsity

structure described in Section 2, in the ideal case the decentralized
scheme should result in a single set A for all sensors in the WSN,
that is, A

l j,m
j ≡A , j = 1, . . . ,J.

Thus, the proposed DCS-FBMP algorithm is carried out in two
alternating phases:
• Sparse support estimate: the first phase consists of estimating

the joint sparse support by exchanging a minimal amount of in-
formation, where only the current optimal index q j needs to be
transmitted by each sensor.

• Amplitude estimate: in the second phase, having fixed the sup-
port obtained during the first phase, each sensor estimates indi-
vidually the corresponding sparse vector w j.
The “message passing” during the first phase can be imple-

mented by either a star-shaped topology, where all sensors com-
municate only with a FC, or a ring-shaped topology, where no FC is
required and the sensor j passes its estimate for q j to the next sen-
sor. The disadvantage of the ring-shaped topology is the increased
estimation time, since a complete passing from all sensors is nec-
essary to decide whether a mixture component should be activated
or not. On the other hand, in a star-shaped topology the process
evolves in parallel. However, synchronization issues arise in this
case, like for instance, how can we resolve the problem of a differ-
ent number of tree levels from sensor to sensor, or the difference in
estimation times, since a single slow sensor could affect the whole
network. These rather network-oriented topics will be the subject
of a separate study.

In the present implementation of DCS-FBMP we adopt the star-
shaped topology by assuming the ideal case of perfect synchro-
nization among the sensors. Thus, at the (l + 1)-th iteration, the
j-th sensor estimates the optimal activated index q j that updates its

corresponding mixture vector, τ
(l+1)
j (q j). Then, each sensor trans-

mits only its index to the FC, where the optimal index ql+1
opt for the

(l + 1)-th iteration (tree level) is the index that appears with the
highest frequency in the set {q j}J

j=1. Afterwards, the FC broad-

casts to the WSN the value of ql+1
opt , and those sensors for which

q j 6= ql+1
opt re-estimate their corresponding set T l+1

j,s using ql+1
opt in-

stead of q j, and accordingly the MMSE estimate of the sparse vector
w j (using (6)-(8)).

4. EXPERIMENTAL RESULTS
In this section, we compare the reconstruction performance of the
proposed DCS-FBMP scheme with the performance obtained by
reconstructing the ensemble jointly via the solution of (3) using
SPGL [11] (J-SPGL) and TFOCS [12] (J-TFOCS), where each sen-
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sor transmits the whole CS measurement vector g j to the FC for
joint reconstruction of w j, j = 1, . . . ,J.

The experimental setup consists of J ∈ {10 : 5 : 30} sensors
distributed uniformly in the square [0,1]× [0,1]. For each sensor
a measurement vector g j is generated according to (2), where the
sparse vector w j is drawn from a multivariate Gaussian distribution
with N = 512 components and L non-zero spikes, whose locations
are chosen at random (but then they are fixed for all sensors). We set
the sparsity level to be equal to L = dλ1 ·Ne, with λ1 = 0.05. The
measurement noise is drawn from a zero-mean multivariate Gaus-
sian with variance σ2

η . In addition, the entries of the measurement
matrix Φ, which is the same for all sensors, are i.i.d. Gaussian sam-
ples and with its columns being normalized to unit `2 norm. The
values of the mixing parameters µ1 and σ2

1 are set equal to 0.5 and
1.5, respectively, while the maximum number of tree searches is set
to Smax = 10. As mentioned in Section 3.2, the thresholding crite-
rion is used to terminate the tree-searches, where the value of the
threshold ρT h is set equal to the mean of the mixture selection met-
ric, E{ρ(τ,g)}, which is given by the following expression after
some algebraic manipulation of (5),

ρT h =−M
2

(
1+ln(2πσ

2
η )
)
−λ1

N
2

ln
(

σ2
1

σ2
η

+1
)

+N
(

lnλ0 +λ1 ln
λ1

λ0

)
.

(10)
The reconstruction performance is evaluated in terms of the re-

construction error, as well as the accuracy in estimating the true
sparse support. The normalized mean-squared error of the MMSE
estimated sparse vectors, ŵ j, is employed as a measure of the re-
construction quality, defined by

NMSEMMSE =
1
J

J

∑
j=1

‖ŵj,MMSE−w j‖2
2

‖w j‖2
2

,

where ŵj,MMSE is the MMSE estimate of w j, given by (7) using
M CS measurements. All of the following results correspond to the
average performance over 100 Monte-Carlo runs.

We start by testing the effect of the number of sensors (J) and
CS measurements (M) on the reconstruction performance. For this
purpose, the value of M varies as a portion of the original signal di-
mension, M = rN, with r ∈ [0.10, 0.50], N = 512. Fig. 1 shows the
average MMSE for the proposed algorithm along with the other two
methods, as a function of J and M. As it can be seen, DCS-FBMP
presents an increased robustness with respect to a reduced amount
of measurements resulting in an improved performance compared
to the J-SPGL and J-TFOCS-based reconstruction methods. The
simple “message passing” process for the recovery of the sparse
support during the first phase of DCS-FBMP maintains an better
reconstruction quality for the whole range of J. This means that
DCS-FBMP could stand up efficiently against potential node fail-
ures that may appear in a WSN decreasing the number of sensors.

On the other hand, Fig. 2 shows the average percentage of exact
recovery of the true sparse support as a function of J and M. By
construction, the solution of DCS-FBMP is exactly sparse and thus
an exact reconstruction is achieved if the supports of the estimated
and the true vectors coincide. This is not the case for the J-SPGL
and J-TFOCS-based solutions, for which an exact reconstruction is
defined if the support of the L largest-amplitude components of the
reconstructed vector coincides with the original support. As before,
the proposed DCS-FBMP method is able to recover perfectly the
original support, without being affected by a decreased number of
CS measurements or sensors. On the contrary, the capability of J-
SPGL and J-TFOCS in recovering the true support decreases as the
number of CS measurements decreases.

As a second evaluation, the reconstruction performance of the
three methods is compared in the case of noisy measurements. For
this purpose, each measurement vector g j, j = 1, . . . ,J, is corrupted
by AWGN with the input signal-to-noise ratio (SNR) varying from
10 to 30 dB. The noise variance is determined by solving the equa-
tion SNR = σ 2

1 λ1N
σ 2

η M , with respect to σ2
η . The following results corre-

spond to M = 0.25 ·N noisy CS measurements.

Figure 1: Average MMSE for DCS-FBMP, J-SPGL, and J-TFOCS
as a function of J, M (L = 26).

Figure 2: Average percentage of exact support recovery for DCS-
FBMP, J-SPGL, and J-TFOCS as a function of J, M (L = 26).

Fig. 3 shows the average MMSE for DCS-FBMP, J-SPGL and
J-TFOCS as a function of the input SNR and the number of sen-
sors. We observe that the proposed method results again in a supe-
rior reconstruction quality for the whole range of (SNR, J) pairs, in
contrast to J-SPGL and J-TFOCS, which are affected by low SNR
values in conjunction with an increased number of sensors (this is
more prominent for J-TFOCS).

Fig. 4 presents the average percentage of exact recovery of the
true sparse support as a function of SNR and J, where the exact re-
covery is defined as in the noiseless case. As before, DCS-FBMP
achieves again a perfect recovery of the original support irrespec-
tively from the number of sensors or the noise power. Regarding
the other two methods, the estimation accuracy decreases with a
decrease of the SNR, with both J-SPGL and J-TFOCS achieving
almost the same performance.

As a last experiment, we evaluate the average reconstruction
performance as a function of the degree of sparsity (L), expressed
as a percentage of the original signal dimensionality, and the num-
ber of sensors (J). Fig. 5 shows that the DCS-FBMP approach out-
performs J-SPGL and J-TFOCS in terms of the reconstruction qual-
ity, while Fig. 6 reveals a significant improvement of DCS-FBMP
in recovering the true sparse support, in contrast to the other two
methods, whose discriminative capability decreases as the number
of sensors and the sparsity level increase.

5. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a decentralized extension of a re-
cent FBMP method for reconstructing a signal ensemble with a
joint sparsity structure at the nodes of a WSN requiring a mini-
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Figure 3: Average MMSE in the noisy case for DCS-FBMP, J-
SPGL, and J-TFOCS as a function of SNR, J (L = 26).

Figure 4: Average percentage of exact support recovery in the noisy
case for DCS-FBMP, J-SPGL, and J-TFOCS as a function of SNR,
J (L = 26).

mal amount of transmitted information. The experimental results
revealed a superior performance compared with previous DCS al-
gorithms, where the reconstruction is based on the transmission of
the full set of CS measurements to a FC. More importantly, for a
WSN scenario, the proposed DCS-FBMP approach is robust to a
reduction in the number of CS measurements or to node failures.

In the present work, we assumed that the components of each
mixture vector τ j are chosen from two distributions (“inactive”, “ac-
tive”). Besides, the parameters of these distributions are predeter-
mined and kept fixed during the reconstruction process. As a fu-
ture work, we are interested in modifying the proposed model so as
to employ a larger set of candidate mixture distributions expecting
that it will increase the approximation accuracy of the underlying
Gaussian mixture model. Moreover, the star-shaped WSN topology
used here requires appropriate synchronization among the nodes.
Such issues, along with the study of hierarchical schemes based on
inter-sensor communications in small local clusters are also of im-
portance in a WSN scenario and should be treated in a thorough
separate study.
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