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ABSTRACT
This work analyzes the impact of radio frequency trans-
mitter impairments on the performance of Multiple–
Input Multiple–Output (MIMO) systems with nonlinear
Tomlinson–Harashima and vector precoding. This analysis is
carried out by means of simulation results using two sorts of
scenarios: spatially-white Rayleigh channels and measured
indoor channels. We also show that incorporating the trans-
mitter noise in the precoder design produces a significant per-
formance improvement.

1. INTRODUCTION
Practical implementations of wireless communication trans-
mitters suffer from a large number of impairments such as
quantization noise, sampling offset, phase noise, I/Q im-
balance ..., which are normally ignored when designing
Multiple–Input Multiple–Output (MIMO) signaling meth-
ods. However, it is shown in [1, 2] that noise generated at
the transmitter can significantly affect predicted MIMO sys-
tem performance. In this work, the impact of residual trans-
mitter noise is evaluated by means of two sorts of scenar-
ios: spatially-white Rayleigh channels and measured indoor
channels obtained using a MIMO testbed developed at the
University of A Coruña [3]. This latter scenario is specially
outstanding to illustrate the influence of transmitter noise
on real-world situations. We only consider MIMO nonlin-
ear schemes since their performance is clearly much better
than the respective linear ones. More specifically, we focus
on Tomlinson–Harashima Precoding (THP) [4,5] and Vector
Precoding (VP) [6]. THP solves the malicious effect of feed-
ing back worng decisions inherent to the wellknown Deci-
sion Feedback (DF) receivers by performing a similar task at
transmission. Correspondingly, VP performs a lattice search
at transmission similar to that carried out byMaximum Like-
lihood (ML) detectors. Contrary to linear precoders, trans-
mitter impairments significantly affect the performance of
nonlinear THP and VP [7, 8]. However, we will show that
this performance degradation can be greatly alleviated if the
transmitter noise is incorporated in the precoder design.

This work is organized as follows. Section 2 describes
the way of modeling the aforementioned transmitter impair-
ments. Sections 3 and 4 respectively explain the design of
THP and VP when transmitter noise is included into filter
optimizations. Finally, computer simulations are shown in
Section 5 and some concluding remarks are stated in Sec-
tion 6.

2. SIGNAL MODELWITH TX-NOISE
When considering a non-ideal transmitter affected by resid-
ual transmitter noise, the transmitted symbols are modeled

as
xt[n] = x[n]+ηt[n] ∈ CN ,

where N is the number of transmit antennas and η t[n] is the
transmitter noise, which will be referred to as Tx-noise. Ac-
cording to [2], Tx-noise is accurately modeled as an addi-
tive Gaussian-distributed noise, i.e. η t ∼ NC(0,Cηt), where
Cηt is the Tx-noise covariance matrix. It is also assumed
that Tx-noise is independent from the transmitted signals.
Correspondingly, we define the Signal–to–Tx-Noise Ratio
(STxNR) as

STxNR=
Etx

tr(Cηt)
,

where Etx is the transmit energy and tr(•) denotes the trace
operator. In practical implementations, typical values of
STxNR range between 22dB and 32dB [2].

3. MIMO THP DESIGN WITH TX-NOISE
Figure 1 shows the block diagram of a MIMO system with K
receive antennas employing THP, which is a nonlinear pre-
coding technique made up of a feedforward filter F ∈CN×K ,
a feedbackward filter I −B ∈ CK×K , and a modulo oper-
ator, denoted in Fig. 1 by M(•). The modulo operator is
introduced to avoid the increase in transmit power due to the
feedback loop [4]. Therefore, the modulo operator constrains
the real and imaginary part of the signal at its input to the in-
terval [− /2, /2] by adding integer multiples of and j to
the real and imaginary part, respectively. Note that the pa-
rameter depends on the modulation. In the particular case
of QPSK modulation, = 2

√
2. Data symbols sent from the

transmitter to the K antenna receiver will be represented by
u[n] ∈ AK , where A denotes the modulation alphabet. The
ordering considerably affects the performance of THP and
for this reason, transmit symbols are passed through a permu-
tation filter P . Minimization is carried out under the restric-
tion ofB being a spatially causal filter and constrained trans-
mit energy (i.e. E[‖x[n]‖22] = Etr) where x[n] = Fv[n] ∈CN

with v[n] representing the output of the modulo operator in
the transmit signal.

At reception, we assume that all acquired signals are
scaled by the same positive real-valued factor g. This
assumption is necessary in order to arrive at closed-form
and unique solutions for the Minimum Mean Square Error
(MMSE) THP design. According to our signal model, the
received signal is

d̂t[n] = d̂[n]+ gHηt[n] ∈ CK ,

where d̂[n] = gHFv[n]+gηr[n] is the received signal when
there is no Tx-noise. At the receiver, the modulo operator
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Figure 1: Block diagram of Tomlinson-Harashima precoding with Tx-noise.

is applied again to invert the effect of this operator at the
transmitter and the resulting signal is passed through a sym-
bol detector (represented by Q(•) in Fig. 1) to produce the
detected symbols ũ[n] ∈ AK .

As explained in [5], the MMSE THP design searches for
the filtering and permutationmatrices that minimize the vari-
ance of the error vector

εt[n] = P TBv[n]− d̂t[n] = ε[n]− gHηt[n], (1)

where ε[n] =P TBv[n]−gy[n] is the error vector when there
is no Tx-noise.

Since transmitter noise is independent from transmitted
signals and receiver noise, the MSE can be decomposed as

MSEt,THP =MSETHP+ |g|2 tr(HCηtH
H), (2)

where MSETHP = E[||ε[n]||22] is the MSE when there is no
Tx-noise, which constitutes the cost function that is mini-
mized in the conventional MMSE design of THP [5], and
MSEt,THP = E[||εt[n]||22] is the resulting MSE under trans-
mitter noise conditions, with the error vector ε t[n] defined in
Eq. (1). Cηr = E[ηr[n]ηHr [n]] is the spatial covariance ma-
trix of the Additive White Gaussian Noise (AWGN) at the
receiver (so-called receiver noise, which is referred to as Rx-
noise).

Following similar derivations to those in [5], the mini-
mization of the MSE cost function of Eq. (2), subject to the
mentioned constraints, can be carried out by means of the
factorization of

Φt = (HHH+ tI)
−1,

where
t = + tr(HCηtH

H)/Etx, (3)

with = tr(Cηr)/Etx [5]. The symmetrically permuted Cho-
lesky decomposition of this matrix is

PΦtP
T =LHDL, (4)

where L and D are, respectively, unit lower triangular and
diagonal matrices. Finally, the MMSE solution for the THP
filters that account for the Tx-noise is given by

F THP
MMSE = gTHP,−1MMSE HHP TLHD

BTHP
MMSE = L−1.

The receive scalar weight gTHPMMSE is directly obtained from
the transmit energy constraint. Assuming that it is real-
valued and positive, it is obtained that

gTHPMMSE =

√
tr(HHP TLHD2CvLPH)

Etx
,

whereCv is the covariance matrix of v[n], which is diagonal
with entries depending on the modulation alphabet [4].

The minimum value for the MSE cost function given by
Eq. (2) can be obtained by substituting the expressions ob-
tained for the optimum filters F THP

MMSE and BTHP
MMSE, and for

the gain factor gTHPMMSE. It is easy to show that the final MMSE
under the presence of Tx-noise is given by

MMSETHP = t tr(CvD) , (5)

where t is given by Eq. (3) andD is the diagonal matrix that
results from the permuted Cholesky factorization of Eq. (4).

As done in [9], instead of testing all possible permutation
matrices to find the one that minimizes the cost function of
Eq. (5), the ordering optimization (given by the permutation
matrix P ) is included into the computation of the Cholesky
decomposition of Eq. (4) (see [9]).

As in [5], it is straightforward to obtain the expressions
for the ZF-THP design as the limiting case when t→ 0. The
expressions for the filters F THP

ZF and BTHP
ZF are equal to that

obtained for F THP
MMSE and BTHP

MMSE, respectively, although the
matrices P , L, andD should be obtained from the symmet-
rically permuted Cholesky factorization of

Φt = (HHH)−1.

4. MIMO VP DESIGN WITH TX-NOISE
Figure 2 shows the block diagram of a MIMO system in-
cluding a vector precoder. The transmitter has the freedom
to add an arbitrary perturbation signal a[n] ∈ ZK+ j ZK to
the data signal prior to linear transformation with the filter
F ∈ CN×K , since the receiver applies the modulo operator
M(•). As in THP, denotes a constant that depends on the
modulation alphabet associated with the modulo operator.

As it can be seen from Fig. 2, the data vector u[n] ∈ CK

is first superimposed with the perturbation vector a[n], and
the resulting vector is then processed by the linear filter F to
form the transmit vector x[n] = Fd[n] ∈ CN , where d[n] is
the desired signal given by u[n] +a[n] and n is the symbol
index in a block size of NB data symbols. The transmit en-
ergy constraint is expressed as NB

n=1 ||x[n]||22/NB ≤ Etx since
transmit symbols statistics are unknown.

The weight g in Fig. 2 is assumed to be constant through-
out the block of NB symbols. Again, note that we use a com-
mon weight for all the receive antennas. Thus, the weighted
estimated signal is given by

d̂t[n] = d̂[n]+ gHηt[n],

with d̂[n] = gHFd[n]+ gη[n]. The modulo operator at the
receiver is used to compensate the effect of adding the per-
turbation a[n] at the transmitter.

The procedure to obtain the optimum VP parameters is
the following. We start by fixing a, after which x and g are
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Figure 2: Block diagram of vector precoding with Tx-noise.

optimized taking into account the transmit power constraint.
For these optimum x and g we choose the best a according
to theMean Square Error (MSE) criterion [6].

As it is demonstrated in [6], the MSE can be expressed
as

MSEt,VP =MSEVP+
1
NB

NB

n=1
‖gHηt[n]‖22 , (6)

where MSEVP = NB
n=1 E[||d[n]− d̂[n]||22|u[n]]/NB with no

Tx-noise, and MSEt,VP = NB
n=1 E[||d[n]− d̂t[n]||22|u[n]]/NB,

otherwise. Then, we reach the following solution for the
MMSE vector precoder

xVPMMSE[n] = g−1,VPMMSE
(
HHH+ tI

)−1
HHd[n]

gVPMMSE =

√
NB
n=1d

H[n]H (HHH+ tI)
−2HHd[n]

EtxNB
,

(7)

where gVPMMSE is directly obtained from the transmit energy
constraint.

By defining the matrixΦt = (HHH+ tI)−1 and apply-
ing the matrix inversion lemma to xVPMMSE[n] in Eq. (7), the
MSE expression of Eq. (6) is reduced to [6]

MMSEt,VP = t
NB

NB

n=1
dH[n]Φtd[n].

SinceΦt is positive definite, we can use the Cholesky factor-
ization to obtain a lower triangular matrix L and a diagonal
matrixD with the following relationship [6],

Φt =
(
HHH+ tI

)−1
=LHDL.

Thus, the perturbation signal can be found by the following
search [6]
aVPMMSE[n] = argmin

a[n]∈ ZK+j ZK
(u[n]+a[n])HΦt(u[n]+a[n])

= argmin
a[n]∈ ZK+j ZK

||D1/2L(u[n]+a[n])||22,

which can be solved by means of the Schnorr-Euchner sphere
decoding algorithm [10, 11]. The successive computation of
a[n] leads to the suboptimum approach of THP described
above.

The ZF constraint E[d̂[n] | d[n]] = gHFd[n], for n =
1, . . . ,NB, leads to similar expressions for xVPZF [n] and gVPZF
as those obtained for the MMSE-VP desgn in Eq. (7) but
considering t → 0. Following similar steps as before, the
MMSE for ZF-VP has exactly the same form as for MMSE-
VP redefiningΦt as (HHH)−1. Finally, the optimumpertur-
bation vectors are found by the following closest point search
in a lattice [6]

aVPZF [n] = argmin
a[n]∈ ZK+ j ZK

∥∥∥HH (HHH)−1d[n]
∥∥∥
2

2
.

5. SIMULATION RESULTS
In this section, the results of several computer simulations
are presented to illustrate the impact of Tx-noise on the
performance of the MIMO precoding schemes described
in the previous sections. We consider two types of chan-
nels: synthetically-generated spatially-white Rayleigh chan-
nels and channels measured using a testbed in an indoor sce-
nario at the University of A Coruña [3] by consideringN = 4
and K = 4 transmit and receive antennas, respectively. The
performancemetric is the uncodedBit Error Rate (BER) ver-
sus the Signal–to–Rx-Noise Ratio (SRxNR) defined as

SRxNR=
EtxK
tr(Cηr)

,

where Cηr is the Rx-noise covariance matrix. The Rx-noise
is also assumed to be statistically independent from the Tx-
noise. We assume the presence of residual Tx-impairments
that produce a STxNR of 25dB, which lies in the practical
range between 22dB and 32dB. The symbols are QPSK
modulated and it is also assumed thatCu = I. The channel is
quasi-static and remains unchanged during the transmission
of a symbol frame, although it changes in an statistically-
independent fashion between frames.

5.1 Results for Spatially-White Rayleigh Channels
Figures 4 and 5 plot BER versus SRxNR for a 4× 4 MIMO
system with THP and VP setups, respectively. The channel
has been synthetically generated from a set of i.i.d. complex-
valued Gaussian random variables (i.e. it is a spatially-white
MIMO Rayleigh channel). In this subsection we assumed
both receiver and transmitter noise are spatially-white, i.e.
Cηt =

2
t I and Cηr =

2
r I. A hundred channel realizations

are considered with frames of 106 symbols.
Note that the impact of the Tx-noise is extremely im-

portant on the performance of THP, as shown in Fig 4.
The performance of conventional THP severely degrades for
SRxNR values above 25dB, where Tx-noise causes an er-
ror floor of about 10−3. As it can be seen from the figure,
the classical MMSE curve with Tx-noise goes up again at
high SRxNR sinceMMSE-THP converges to ZF-THP, which
is much more sensitive to noise. Notice that the effect of
Tx-noise could be seen as an additive and coloured noise at
the receiver. However, note that including Tx-noise into the
MMSE-THP design greatly alleviates this problem and the
error floor is reduced to a residual value of about 10−7. For
vector precoding, as it can be seen from Fig 5, the BER per-
formance is much less affected by Tx-noise than in the case
of THP. Nevertheless, the inclusion of Tx-noise in filter op-
timizations improves the performance achieved by classical
VP designs in 1dB at a BER of 10−6.

5.2 Results for Measured Indoor Channels
We also carried out computer experiments considering chan-
nels measured in a realistic indoor scenario with a testbed
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Ĉηr = 102×





1.2058 −0.0104+ 0.0079i −0.0030+ 0.0141i 0.0212− 0.0040i
−0.0104− 0.0079i 0.9973 0.0119+ 0.0061i 0.0043− 0.0038i
−0.0030− 0.0141i 0.0119− 0.0061i 0.6265 −0.0007+ 0.0076i
0.0212+ 0.0040i 0.0043+ 0.0038i −0.0007− 0.0076i 1.1025



 ,

Ĉηt = 10−3×





2.6069 0.0810− 0.0115i 0.0058+ 0.0068i −0.0107+ 0.0001i
0.0081+ 0.0115i 2.6413 0.0020+ 0.0020i −0.0127+ 0.0035i
0.0058− 0.0068i 0.0020− 0.0020i 2.5552 0.0037+ 0.0018i
−0.0107− 0.0001i −0.0127− 0.0035i 0.0037− 0.0018i 3.4155



 .

Figure 3: Transmitter and receiver noise covariance matrices estimated using the testbed.
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Figure 4: BER vs. SRxNR with Tomlinson-Harashima over
spatially-white Rayleigh channels.

developed at the University of A Coruña [3]. The testbed is
made up of two PCs, one for the transmitter and one for the
receiver. Each PC contains the baseband hardware plus the
Radio-Frequency Front-End (RF-FE). The baseband hard-
ware is composed of fast memories, which can be accessed at
the speed of the A/D and D/A converters, thus allowing the
transmission and subsequent acquisition of signals in real-
time. However, the signal processing at both transmitter and
receiver sides is performed off-line.

With the goal of obtaining statistically rich channel real-
izations, and given that the utilized RF-FE is frequency-agile,
we measure at different RF carriers in the frequency interval
ranging from 5219MHz to 5251MHz and from 5483MHz
to 5703MHz. Carrier spacing is 4MHz (greater than the
signal bandwidth, which is equal to 1.12MHz), resulting in
65 different frequencies. Additionally, we repeat the whole
measurement procedure for four different positions of the re-
ceiver, giving as a result 260 channel realization measure-
ments. After normalization, channel matrices have a mean
Frobenius norm equal to NK = 16.

Figure 6 shows the frame structure, where a Pseudo-
Noise (PN) sequence of 119 symbols is added as a pream-
ble for synchronization together with a silence of 50 sym-
bols. The receiver noise covariance matrix Ĉηr is calculated
based on the observations acquired during the silence after
the preamble. On the other hand, both the MIMO chan-
nels and the total noise covariance matrix Ĉηtot were esti-
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Figure 5: BER vs SRxNR with vector precoding over
spatially-white Rayleigh channels.

PN (preamble) training sequence (pilot symbols)
50 symbols119 symbols 4000 symbols (per transmit antenna)

4.19 ms

Figure 6: Frame structure used by the measurement proce-
dure.

mated during the transmission of the training sequence. The
transmitter noise covariance matrix is directly obtained from
Ĉηtot = ĤĈηtĤ

H+Ĉηr by performing Ĉηt = Ĥ−1(Ĉηtot−
Ĉηr)Ĥ

−H. Figure 3 shows the receiver and transmitter
noise covariance matrices obtained from the testbed mea-
surements. These covariance matrices are plugged into the
THP and VP filter expressions derived in the previous sec-
tions. Simulated Gaussian noise was additionally injected to
change the operating SRxNR value.

Figure 7 plots the BER performance in terms of SRxNR
for MIMO systems with both MMSE- and ZF-THP when
transmitting over indoor channels obtained from the testbed.
Two hundred and sixty channel realizations are considered
with frames of 105 symbols. Again, note the high sensitivity
of the performance of MIMO systems with THP with respect
to Tx-noise. The performance of both MMSE- and ZF-THP
is considerably degraded due to Tx-noise and an error floor
arises at the significant BER value of 2× 10−3. This error
floor can be reduced to the BER value of 3×10−6 when Tx-
noise is considered in the design. The same effect is observed
for VP over indoor channels but at lower values of BER since
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VP is optimal with respect to THP and not so influenced by
noise impairments at the transmitter because of the correc-
tion performed by the lattice search. Figure 9 shows the his-
togram of the modulus and the angle of the measured MIMO
channel coefficients. While the angle follows an uniform dis-
tribution, the modulus is clearly not Rayleigh. This explains
the differences in performance between the case of measured
indoor channels and that of spatially-white channels in the
previous subsection.

6. CONCLUSIONS

This work investigates the impact of noise generated by
practical transmitters on the performance of MIMO systems
with nonlinear THP and VP. We have shown that Tx-noise
severely degrades the performance of both precoding meth-
ods although their performance can be significantly improved
if Tx-noise is included in precoder designs.
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Figure 9: Histogram of the module (left-hand) and the angle
(right-hand) of the estimated channel coefficients.
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dio Communications, chapter A Distributed Multilayer Soft-
ware Architecture for MIMO Testbeds, In-Tech, Apr. 2010.

[4] R. F. H. Fischer, Precoding and Signal Shaping for Digital
Transmission, John Wiley & Sons, 2002.

[5] M. Joham, Optimization of Linear and Nonlinear Transmit
Signal Processing. PhD dissertation, Munich University of
Technology, 2004.

[6] D. A. Schmidt, M. Joham, and W. Utschick, “MinimumMean
Square Error Vector Precoding,” European Transactions on
Telecommunications, vol. 19, no. 3, pp. 219–231, March/April
2008.
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[8] J. González-Coma, P. Castro, and L. Castedo, “Transmit im-
pairments influence on the performance of mimo receivers and
precoders,” in Proc. European Wireless, April 2011.

[9] K. Kusume, M. Joham, W. Utschick, and G. Bauch,
“Cholesky factorization with symmetric permutation ap-
plied to detecting and precoding spatially multiplexed data
streams,” IEEE Transactions on Signal Processing, vol. 55,
no. 6, pp. 3089–3103, June 2007.

[10] C. P. Schnorr and M. Euchnerr, “Lattice basis reduction:
Improved practical algorithms and solving subset sum prob-
lems,” Math. Programming, vol. 66, pp. 188–191, September
1994.

[11] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2389–2402, 2003.

803


