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ABSTRACT

The undecimated wavelet transform and the maximum a pos-
teriori (MAP) criterion have been applied to the problem of
despeckling SAR images. The solution is based on the as-
sumption that the wavelet coefficients have a known distri-
bution; in previous works, the generalized Gaussian function
has been successfully employed. Furthermore, despeckling
methods can be improved by using a classification of the
wavelet coefficients according to their texture energy. A ma-
jor drawback of using the generalized Gaussian distribution
is the high computational cost, since the MAP solution can
be found only numerically.

In this work, a new modeling of the statistics of the
wavelet coefficients is proposed. The observation of the ex-
perimental estimated generalized Gaussian shape parameters
related to the reflectivity and to speckle noise suggests that
their distributions can be approximated as a Laplacian and as
a Gaussian function, respectively. Under these hypotheses,
a closed form solution of the MAP estimation problem can
be achieved. As for the generalized Gaussian case, classifi-
cation of the wavelet coefficients according to their texture
content can also be exploited in the new proposed method.
The experimental results show that the fast MAP estimator
based on the Laplacian-Gaussian assumption and on coef-
ficient classification reaches almost the same performances
of the generalized Gaussian counterpart in terms of speckle
removal, with a computational gain of about one order of
magnitude.

1. INTRODUCTION

Speckle removal is a major problem in the analysis of SAR
images. Speckle noise is a granular disturbance that affects
the observed reflectivity. Usually, it is modeled as a multi-
plicative noise: this nonlinear behavior makes the process of
original information retrieval a nontrivial task [1]- [3]. In the
recent years, multiresolution analysis tools have been suc-
cessfully applied [4]-[7]. Despeckling can be seen as an es-
timation problem. As such, the proposed statistical despeck-
ling methods can be classified according to the estimation
criterion and to the models of the processes that are involved.
Bayesian methods, such as LMMSE and MAP criteria, have
been taken into consideration both in the spatial and in the
wavelet domain, e.g., in [1][2][5][7]. Different distributions
have been considered in several works dealing with MAP es-
timation in the wavelet domain: the Γ-distribution [2], the
α-stable distribution [4], the Pearson system of distributions
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[5], the generalized Gaussian (GG) [8][9], to cite some ex-
amples.

In [8], it has been shown that the MAP criterion in the
undecimated wavelet domain, associated with the GG dis-
tribution, leads to the following procedure: 1) estimation of
the spatially varying parameters of the GG distribution of the
wavelet coefficients associated to the speckle-free reflectiv-
ity and to the speckle noise; 2) solution of the MAP equa-
tion. The latter step is performed numerically, thus leading
to a high computational cost to achieve the solution. The
method in [8] has been refined in [9], where a model for the
classification of the wavelet coefficients according to their
texture energy was introduced. The model allowed the au-
thors to classify the wavelet coefficients into classes having
different degrees of heterogeneity, so that ad hoc estima-
tion approaches can be devised for the different sets of co-
efficients. Different implementations, characterized by dif-
ferent approaches for incorporating into the filtering proce-
dure the information deriving from the segmentation of the
wavelet coefficients, were proposed. The experimental re-
sults in [9] demonstrated that the proposed filtering approach
outperformed previously proposed filters.

One of the major drawback of GG-based MAP solutions,
either with or without classification of the wavelet coeffi-
cients, is that they can be achieved only numerically. Exper-
imental results suggest that the estimated distributions of the
wavelet coefficients relative to the speckle-free reflectivity
and to the speckle noise follow, approximately, a Laplacian
and a Gaussian distribution, respectively. Under these as-
sumptions, it is shown that the MAP equation can be solved
in a closed form. The computational cost can be reduced
of one order of magnitude or more with respect to the solu-
tion obtained numerically with the GG assumption, without
significantly affecting the performance in terms of speckle
reduction.

As in the case of the GG-based MAP solution, also for
the Laplacian-Gaussian (LG) based method an improvement
of the performances can be achieved by using a classification
of the wavelet coefficients according to their texture content
and by using different filtering strategies over the different
classes.

2. MAP DESPECKLING IN THE UNDECIMATED
WAVELET DOMAIN

In this section, some results from [8] are reviewed and the
experimental observations that lead us to a new wavelet co-
efficients modeling are presented.
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2.1 Signal model and undecimated wavelet transform

It is assumed that the observed signal follows the model

g[n] = f [n] ·u[n] = f [n]+ f [n] · (u[n]−1) = f [n]+v[n], (1)

where g[n] is the observed signal; f [n] is the speckle-free re-
flectivity we would like to estimate; u[n] is the speckle noise;
v[n] accounts for speckle disturbance in the equivalent addi-
tive model. The speckle u[n] is assumed as white and inde-
pendent from f [n], whereas v[n] is signal-dependent. For the
simplicity’s sake, the model is formulated in one dimension.

Let W
[ j]
x be the undecimated wavelet operator applied to

the signal x. It performs a multiresolution decomposition,
where j is the level of the decomposition. Thanks to the
linearity of the operator, we have

W
[ j]
g [n] =W

[ j]
f [n]+W

[ j]
v [n]. (2)

To simplify the notation, the level j and the index n (when
not strictly necessary) are omitted in the following.

Despeckling in the multiresolution domain means esti-

mating the speckle-free wavelet coefficients Ŵf [n] and ap-
plying the inverse undecimated wavelet transform.

2.2 MAP estimation

The MAP estimator of the speckle-free wavelet coefficients
is given by

Ŵf = argmax
W f

p(Wf |Wg), (3)

or, after applying the Bayes rule and the log function, by the
equation

Ŵf = argmax
W f

[log p(Wg|Wf )+ log p(Wf )] (4)

2.3 Analysis of the GG Shape Parameter

In [8], a GG function is proposed to model the wavelet coef-
ficients pdf’s involved in (4). The zero-mean GG distribution
is given by

pGG (θ) =
νη

2Γ(1/ν)
e−(η |θ |)ν

, (5)

where ν is a shape parameter and η is a scale parameter,
given by

η =
1

σ

[

Γ(3/ν)

Γ(1/ν)

]1/2

. (6)

It is well-known that the GG distribution coincides with the
Laplacian distribution for ν = 1 and with the Gaussian distri-
bution for ν = 2. In [8], it is shown that the shape parameter
can be estimated by solving the following equation in the un-
known ν

E
[

X2
]

√

E [X4]
=

Γ(3/ν)
√

Γ(1/ν)Γ(5/ν)
, (7)

where E
[

X2
]

and E
[

X4
]

are the second and the fourth-order
moments of the GG-distributed random variable X . In the
actual implementation, such moments are “locally” evalu-
ated from the observed signal and from the knowledge of the
model (1) (see [8] for the details).

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

ν
W

f

ν
W

f  
o

c
c
u

rr
e

n
c
e

s

(a)

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

ν
W

v

ν
W

v

  
o

c
c
u

rr
e

n
c
e

s

(b)

Figure 1: Examples of the histogram of the estimated shape
parameters: (a) wavelet coefficients of the speckle-free sig-
nal; (b) wavelet coefficients of the signal-dependent noise.

Some experimental observations of the shape parameters
suggest us that the GG assumption for the distributions of the
wavelet coefficients can be simplified. As to the pdf’s of the
wavelet coefficients of the speckle-free signal, i.e., pW f

(Wf ),
an example of the histogram of the estimated shape parame-
ters, obtained from the test image Lena, is shown in Figure
1-(a): as can be seen, in a first approximation, we may as-
sume that they roughly approach the value 1. An analogous
example, relative to the pdf’s of the wavelet coefficients of
the signal-dependent noise, i.e., p(Wg|Wf ) = pWv(Wg −Wf ),
is shown in Figure 1-(b): in this case, we may assume that the
shape parameters approach the value 2. A behavior similar
to that shown in these examples has been also encountered
for different subbands and different decomposition levels.

In the remainder of this paper, we will show that if we
assume that the wavelet coefficients related to the speckle-
free signal and to the signal-dependent noise are distributed
as a Laplacian and as a Gaussian function, respectively (LG
assumption), then the solution of the MAP equation can be
found in a closed form and, therefore, with a limited com-
putational burden. The LG assumption has been used in
other works to derive MAP and MMSE estimators [10][11].
A major difference with respect to the work presented here
is that in [11] homomorphic filtering was used. Such pre-
processing, however, may induce a biased estimation and we
preferred to avoid it.
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3. LG DESPECKLING FILTERS

3.1 LG-MAP despeckling

The proposed method is based on equation (4) that, by using
a simplified notation and the model in (2), can be rewritten
as

θ̂ = argmax
θ

[log pυ(x−θ)+ log pθ (θ)], (8)

where θ =Wf [n], x =Wg[n], and υ =Wv[n].
According to the experimental results presented in sec-

tion 2.3, we will assume that the distribution of θ is a Lapla-
cian and that of υ is a Gaussian function; specifically, they
are distributed as follows:

pυ(υ) =
1√

2πσυ

e
− (υ−µυ )2

2συ 2 , pθ (θ) =
1√
2σθ

e
−

√
2|θ−µθ |

σθ (9)

In [7], it has been demonstrated that, for the noise com-
ponent υ , we have

E [υ ] = 0, (10)

σ2
υ = E

[

υ2
]

=
σ2

u′

1+σ2
u′

∑
i

h2[i]E[g2[n− i]], (11)

where h[n] is the “equivalent” filter [7] that yields the wavelet

coefficients of a given subband and σ2
u′ is the variance of the

variable u′ = u−1. For the signal component θ , instead, we
have

E [θ ] = E [x] , (12)

σ2
θ = σ2

x −E
[

υ2
]

. (13)

From the above expressions, we can conclude that the mo-
ments of the variables υ and θ can be written as a function
of the moments of the observed signal and of the observed
wavelet coefficients (these quantities are estimated as local
averages).

The MAP equation can be written as

θ̂ = argmax
θ

[

log
1√
2σθ

e
−

√
2|θ−µθ |

σθ + log
1√

2πσυ

e
− (x−θ)2

2συ 2

]

= argmin
θ

[√
2|θ −µθ |

σθ
+

(x−θ)2

2σ2
υ

]

.

(14)

The solution to this optimization problem is given by

θ̂ =















x−
√

2σ2
υ

σθ
if x > µθ +

√
2σ2

υ
σθ

x+
√

2σ2
υ

σθ
if x > µθ −

√
2σ2

υ
σθ

µθ elsewhere.

(15)

The proof can be easily obtained as follows. Consider, e.g.,
the case θ < µθ : equation (14) becomes

θ̂ =argmin
θ

[

−
√

2(θ −µθ )

σθ
+

(x−θ)2

2σ2
υ

]

. (16)

Differentiating with respect to θ yields a zero for

θ = x+

√
2σ2

υ

σθ
(17)

Substituting this expression into the initial assumption θ <

µθ yields x > µθ −
√

2σ2
υ

σθ
. The other cases can be derived in

a similar way.

3.2 LG-MAP with Segmentation

In [9], it was demonstrated that the performance of the GG-
MAP filter can be noticeably improved using a segmented
approach, where each wavelet subband is divided into differ-
ent classes of heterogeneity according to the texture energy
of the wavelet coefficients of noise–free reflectivity. The key
point is to assume that the wavelet coefficients within a par-
ticular class follow the same GG distribution, so that the pa-
rameters of the GG model can be accurately estimated within
each class.

A similar approach can be applied in the case of the LG-
MAP filter. Here, the key observation is that the LG model
may be well suited only for a particular class of heterogene-
ity, whereas for other classes it may be better to use alterna-
tive models. According to the class each wavelet coefficient
belongs to, we propose to apply the following three process-
ing strategies.

• Wavelet coefficients belonging to the lower energy class
are processed using the LG-MAP filter we propose in
this paper. This class represents the set of coefficients
of weakly textured areas, or homogeneous areas, which
are better approximated by the assumption of Laplacian
distribution.

• Wavelet coefficients belonging to the middle energy class
are processed using the LMMSE filter proposed in [7].
The LMMSE filter is a general–purpose first–order ap-
proximation filter and it represents the optimal MAP fil-
ter when both the coefficients of noise–free reflectivity
and the coefficients of speckle noise follow a normal dis-
tribution. We assume that this hypothesis is sufficiently
valid for coefficients belonging to heterogeneous areas.

• Wavelet coefficients belonging to the last class are sup-
posed to represent strongly heterogeneous areas or point
targets. Because these areas do not follow any longer the
fully–developed speckle model, the wavelet coefficients
of the last class are left unchanged.

In the following, the above filtering strategy will be referred
to as LG-MAP-SEG filter.

4. EXPERIMENTAL RESULTS

In this section, the experimental results obtained with the
algorithms previously described are compared in terms of
speckle removal efficiency and computational burden. In or-
der to ascertain the performance loss/gain of the LG vs the
GG assumption, a first set of quantitative results obtained by
using a 8 bit 512× 512 test image (Lena), degraded by syn-
thetically generated speckle noise, are shown. Then, some
results derived from a true SAR image are also presented.

In the case of synthetically generated speckle degra-
dation, the quality of the filtered image can be measured
by means of the peak SNR (PSNR), given by PSNR =
10log10 2552/MSE, where MSE is the mean square error be-
tween the original and the filtered image.

A more general method to assess the effectiveness of the
different filters, which can be used also when the noise-free
reference image is not available, is based on the statistics of

the ratio image, defined as û = g/ f̂ , where f̂ represents the
estimated noise–free reflectivity. When a fully–developed
speckle model can be assumed, the above image represents
the filtered out speckle noise. Hence, for a good despeckling
filter û should satisfy E[û] = 1 and Var[û] = 1/L, where L is
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Table 3: Mean and variance of extracted noise û, measured on synthetically corrupted Lena through scatter-plot method.

1-look 2-look 4-look 16-look

µû σ2
û µû σ2

û µû σ2
û µû σ2

û

LMMSE 0.9278 0.6978 0.9568 0.3602 0.9752 0.1863 0.9919 0.0465
GG-MAP-SEG 0.9854 0.9359 0.9883 0.4755 0.9919 0.2385 0.9966 0.0597

LG-MAP 0.9787 0.8974 0.9849 0.4553 0.9892 0.2304 0.9941 0.0576
LG-MAP-SEG 0.9787 0.8974 0.9848 0.4553 0.9891 0.2303 0.9945 0.0573

Table 1: PSNR obtained by using Lena degraded by synthet-
ically generated speckle.

1-look 2-look 4-look 16-look

LMMSE 24.59 26.62 28.57 32.61
GG-MAP-SEG 26.40 28.04 29.77 33.24

LG-MAP 26.21 27.77 29.41 32.95
LG-MAP-SEG 26.21 27.82 29.55 33.27

Table 2: Order of magnitude of the computational times (in
seconds) of the analyzed algorithms for 512×512 images.

computational cost (s)

LMMSE 101

GG-MAP-SEG 102

LG-MAP 101

LG-MAP-SEG 101

the number of look [3].

The mean and the variance of the ratio image are esti-
mated by using a scatter plot method similar to that proposed
in [12]. The method consists of the following steps. First,
a scatter plot is obtained by plotting the occurrences of each
pair of local mean and standard deviation, calculated on a
moving local window over the image û. Hence, the bivari-
ate probability density function (pdf) is estimated from the
scatter plot, and the mean and standard deviation of û are es-
timated as the coordinates of the maximum of the bivariate
pdf. The rationale of this method is based on the assumption
that each local window would give a contribution centered
on such a maximum if the size of the window is sufficiently
large. Thanks to using statistics computed on local windows,
the above method is accurate also in the case of real SAR im-
ages, for which the assumption of fully–developed speckle is
not valid everywhere and global statistics would be biased
due to the presence of outliers.

The despeckling filters that are compared in the following
are: the LMMSE filter presented in [7]; the GG-MAP-SEG
filter proposed in [9]; the LG-MAP filter proposed in section
3.1; the LG-MAP-SEG filter proposed in section 3.2.

In Table 1, the performance of the despeckling filters are
compared in terms of PSNR. The order of magnitude of the
computational times, expressed in seconds and related to our
Matlab implementation, are shown in Table 2. As can be
seen, the complexity of the LG filters is the same as the
LMMSE one. However, especially for multilook images, the
performance of the LG-MAP-SEG filter is very close to that
of the GG-MAP-SEG filter, showing that a valuable com-

Table 4: Mean and variance of extracted noise û, measured
on nominal 4-look SAR image Airport through scatter-plot
method.

µû σ2
û

LMMSE 0.9298 0.1584
GG-MAP-SEG 0.9722 0.2878

LG-MAP 0.9606 0.2540
LG-MAP-SEG 0.9583 0.2515

putational gain is achieved at the price of almost unaltered
performances in terms of PSNR. These results are confirmed
by the observation of Table 3, where the mean and the vari-
ance of û, estimated by using the scatter plot method on the
test image Lena for the different algorithms, are shown.

As to the results on true SAR data, they have assessed
by using a 8 bit 512×512 X-HH 4-look image representing
an airport in Ontario. The original image, is shown in Fig-
ure 2; the despeckled versions obtained with the LMMSE,
GG-MAP-SEG, LG-MAP, and LG-MAP-SEG filters are also
shown in Figure 2. In Table 4, the mean and the variance of
û, estimated by using the scatter plot method on the airport
image for the different methods, are shown. From Table 4,
we observe that the LG methods have similar performances
as the GG-MAP-SEG method and outperform the LMMSE
one. It can be also observed that the performances of the
LG-MAP and the LG-MAP-SEG are almost identical, high-
lighting that they behave in the same way in fully developed
speckle areas. However, comparing Figures 2-(d) and 2-(e),
we observe that the LG-MAP-SEG yields a better preserva-
tion of texture details.

5. CONCLUSIONS

The MAP estimator, operating in the undecimated wavelet
domain, with coefficients of reflectivity and noise both mod-
eled as generalized Gaussian densities, has been demon-
strated to be successful for removing speckle noise in SAR
images. However, only a numerical solution, affected by a
high computational burden, has been achieved. In this pa-
per, based on the observation of the experimental histograms
of the shape factors, the assumption of Laplacian reflectiv-
ity and Gaussian noise is made and a closed form solution is
found. The Laplacian-Gaussian modeling is also combined
with a segmentation-based approach, in which different fil-
tering strategies are applied according to the heterogeneity
of wavelet coefficients. The experimental results show that
the performance of the fast algorithms, assessed on both sim-
ulated speckled images and on a true high-resolution X-HH
4-look image, are comparable with those of the GG-based so-
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lutions, with a computational complexity more than ten times
lower.
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Figure 2: Results obtained by filtering nominal 4-look SAR
image Airport, shown in (a), by using the LMMSE (b), the
GG-MAP-SEG (c), the LG-MAP (d) and the LG-MAP-SEG
(e) filters.
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