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ABSTRACT
This paper describes an optical flow estimation algorithm
using directional filters and an AM-FM demodulation algo-
rithm, and its efficient implementation on a NVIDIA GPU
using CUDA. The resulting implementation is several thou-
sand times faster than the corresponding MATLAB code,
which makes the described scheme suitable for real-time ap-
plications.

This paper also describes a new multiresolution scheme
for our algorithm which allows estimating high speeds with-
out aliasing.

The accuracy of our algorithm has proved to be compa-
rable to the accuracy of well-known optical flow algorithms.

1. INTRODUCTION

The estimation of the apparent motion in an image sequence
is used in many application like video compression, object
detection and tracking, robot navigation, and so on.

In the past decades, many optical flow estimation algo-
rithms have been developed. The ones proposed by Horn &
Schunck and by Lucas & Kanade are among the most famous
ones. A good overview and comparison of different optical
flow estimation algorithms can be found in [1].

This work is based on an algorithm originally developed
by Ivar Austvoll in [2, 3] and modified by Espen Kristof-
fersen in [4]. We refer to this modified algorithm as Ba-
sic Algorithm in this paper. A multiresolution scheme was
also suggested in [2], but not implemented. For this work
we have also implemented and evaluated that multiresolution
scheme (which we refer to as Pyramid Algorithm throughout
this publication).

In this paper, the focus is on the efficient implementation
of these algorithms, utilizing the massive (and cheap) paral-
lel computing power of modern GPUs (Graphic Processing
Unit). With NVIDA’s CUDA (Compute Unified Device Ar-
chitecture), using a NVIDIA GPU for all kinds of computa-
tions has become easier than ever.

Section 3 gives a brief introduction on GPU program-
ming using CUDA. The actual implementation of the Basic
Algorithm is described in section 4.

Section 5 compares the execution times of the Matlab
implementation of the Basic Algorithm with the optimized
CUDA implementation.

Section 6 introduces the multiresolution scheme which
allows estimating high speeds without aliasing. In section
7, the results of this new algorithm (Pyramid Algorithm) are
compared with the results of some well-known algorithms.

Detailed information about the CUDA implementation,
the Pyramid Algorithm and the results can be found in [5].
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Figure 1: Basic Algorithm Overview.

This report, as well as the source code, is also available on-
line: http://www.medialab.ch/EUSIPCO2011/.

2. BASIC ALGORITHM

Figure 1 shows the structure of the Basic Algorithm. Each
frame in the image sequence is decomposed using a set of di-
rectional filters to reveal the structure of the image. In a sec-
ond step, the component velocity (magnitude and sign of the
velocity in a given direction) is computed for every direction.
When looking at the image sequence as a three-dimensional
volume, the component velocity for a given direction can be
determined by slicing the cuboid in the time direction along
the respective direction and examining the structure of this so
called ST-slice. The component velocity vc is directly related
to the angle α in which features move along the time axis
of the ST-slice (vc = tanα). Finally, solving a linear system
of equations allows finding the x- and y-components of the
resulting optical flow vectors.

The directional filters are two-dimensional complex fil-
ters, separable into a longitudinal (along the filter direction)
and a transversal (orthogonal to the filter direction) part. The
transversal part is a real lowpass filter with a narrow band-
width to ensure that most of the energy is in the direction of
the filter. The longitudinal part is a complex bandpass fil-
ter with a wide bandwidth to capture as much energy for the
given direction as possible. The longitudinal part also acts
as a Hilbert transform. The output of the directional filters is
therefore approximately an analytic signal and can be mod-
elled as z(sss) = a(sss) · e jϕ(sss) where sss is a vector consisting of
the coordinate s along the filter direction and the time t. a(sss)
is the amplitude function (which is used to compute a confi-
dence measure, but not for the optical flow estimation itself),
and ϕ(sss) is the phase function.

The next step is to compute the phase gradient (or in-
stantaneous frequency) ∇ϕ(sss). A discrete 2D AM-FM de-
modulation algorithm is used to estimate the instantaneous
frequency directly from the real- and imaginary-part of the
directional filter output [6].
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The instantaneous frequencies of a local neighbourhood
are used to build a structural tensor. The eigenvector eee111 of
the structural tensor, which is associated with the smallest
eigenvalue, points in the direction α of the movement of the
features in the local ST-slice. Therefore, the component ve-
locity for the given direction is vc = tanα = e1(1)/e1(2).

3. CUDA

CUDA is a parallel computing architecture developed by
NVIDIA which allows utilizing the parallel computation
power of modern NVIDIA GPUs. CUDA basically provides
some extensions to the standard C language which allow ker-
nel code (code that runs on a GPU) to be written in C. Addi-
tionally, an API to manage devices, threads, memory, etc. is
provided.

CUDA kernels are executed in threads, which are
grouped into thread blocks. The GPU is free to allocate
thread blocks to its multiprocessors in any order. Therefore,
dependencies between thread blocks must be avoided. This
leads to a highly scalable architecture.

A GPU provides different kinds of device memory:
The vast bulk of the available memory is global memory,

which is shared by all threads. Access to global memory is
slow, since it is located off-chip. Whenever possible, several
accesses to global memory should be coalesced to a single
transaction.

Local memory is also located off-chip and therefore slow.
Each thread has its own local memory. This type of mem-
ory is only used by the compiler to hold automatic variables
when there are not enough registers available.

Access to registers is very fast. The scope of a register is
one thread and the number of registers is limited.

Shared memory is much faster than global memory
(about 100× lower latency) and can be as fast as access-
ing registers. All threads in a thread block have access to
the same shared memory. Care has to be taken to avoid bank
conflicts, which can slow down the access to shared memory.

Constant memory can be read from all threads but can
only be written by the host. Since the constant memory is
cached, access can be very fast.

Texture memory is also a read-only memory which can
be accessed by all threads. To use this kind of memory, a
properly aligned global memory area is bound to a texture.
Data can then be read by texture fetches. Texture memory is
cached (optimized for spatial locality in two dimensions) and
offers some interesting addressing features:

• A texture can be addressed by floating point values and
return interpolated values (nearest neighbour or linear in-
terpolation).

• Boundary cases (out of range addressing) can be handled
automatically (clamping or wraping).

• A normalized addressing mode is available which allows
accessing a texture with addresses in the range [0,1], in-
dependent of the actual texture dimensions.

• When a texture is bound to a memory area storing inte-
ger values, these values can automatically be converted
to floating point values in the range [0,1] or [−1,1].

More information about CUDA programming can be
found in the NVIDIA CUDA Programming Guide and in the
NVIDIA CUDA C Programming Best Practices Guide.

4. IMPLEMENTATION

The algorithm is implemented as a Matlab MEX file, so
that it can be easily used from Matlab. A MEX file is ba-
sically a Dynamic Link Library (DLL) with the extension
.mexw64 (on a 64-bit Windows system). Exporting mex-
Function, which has a defined signature, allows Matlab to
execute the code of the MEX file. Matlab libraries provide
an API to interact with Matlab (libmex.lib) and to exchange
parameters and return values with Matlab (libmx.lib). From
the Matlab point of view, the code in the MEX file can be
called like any other Matlab function.

copy image sequence from host memory to global memory

load frame into texture memory

iterate over frames (i)

iterate over angles

call rotating kernel

call transversal filtering kernel

call longitudinal filtering kernel

call instantaneous frequencies kernel

call component velocities kernel

call back-rotating kernel

call optical flow kernel

copy results from global memory to host memory

i > 1
yesno

i > 2*radTemp+1
yesno

yesno
i > 2*radTemp+1

Figure 2: Implementation of the Basic Algorithm.

Figure 2 shows the structure of the (optimized) imple-
mentation of the Basic Algorithm. There are several things
to note here:

• Data transfers between the host memory (RAM) and de-
vice memory (e.g. global memory) are very expensive.
To reduce the number of these transactions, the whole
image sequence is copied to global memory at the begin-
ning in one transaction. All intermediate results are kept
on the GPU. In the end, the resulting flow vectors are
copied back to the host memory.

• To compute the instantaneous frequencies of one frame,
the directional filter response of the previous, the current,
and the next frame are needed. Similarly, to compute
the component velocities of one frame, the instantaneous
frequencies of a range of frames are needed (depending
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on the temporal radius of the local ST-slice, radTemp).
• The directional filter is separable, allowing perform-

ing the longitudinal (along the filter direction) and the
transversal (orthogonal to the filter direction) filtering se-
quentially.

• Instead of using a set of directional filters with different
directions, the images are rotated. The results are rotated
back before combining the component velocities to the
final flow vectors.
The kernels are implemented to operate on a single pixel

of the image sequence. The thread block size is 16× 16.
All image dimensions are padded to a multiple of 16 in both
directions. This makes the code more readable and efficient,
since no boundary checks are needed.

For the implementation of the rotating kernel, using tex-
ture memory is the obvious solution. The image dimension
(bounding rectangle) of the rotated (and padded) image is in
general bigger than the original image. However, using the
clamping addressing mode of the texture memory, no explicit
boundary checks have to be performed in the code. Further-
more, a bi-linear interpolation of the rotated image can be
performed implicitly by the texture memory. Note that the
texture is bound to each input image only once (see figure 2).

Due to the large number of filter coefficients of the di-
rectional filter (49 real coefficients for the transversal part
and 15 complex coefficients for the longitudinal part), a
straightforward implementation of these convolutions leads
to many redundant read accesses from global memory. Two
approaches to improve memory access were evaluated:

• Before performing the convolution, values are copied
from global memory to shared memory, which allows
fast access to these values by all threads within the thread
block. This approach has to be optimized for a given fil-
ter length, but does not add any complexity on the host
side.

• The second approach is to use texture memory for the
source image to take advantage of its caching capabili-
ties (which are optimized for spatial locality). This ap-
proach adds some complexity on the host side (binding
the global memory to a texture), but is more flexible re-
garding the filter length.

Experiments showed that it is most efficient to use the shared
memory approach for the transversal filtering kernel. Each
thread first loads four values from global memory to shared
memory and then performs the convolution for one output
value. The longitudinal filtering kernel is more efficient with
the texture memory approach.

The instantaneous frequencies kernel was mainly im-
proved by analytically simplifying the AM-FM demodula-
tion algorithm (see [5]).

CUDA offers vector data types (e.g. float2) which can
help reduce the number of memory accesses by reading or
writing several values in a single transaction. These data
types can also be used with texture memory. A good exam-
ple for this is the implementation of the back-rotating kernel,
where each thread reads and interpolates a component veloc-
ity together with its confidence value using a single instruc-
tion.

Further improvement of the total execution time was
achieved by optimizing the host code, namely by reducing
the number of device memory allocation and freeing opera-
tions, kernel calls and texture binding operations.

5. SPEEDUP

The following experiments were carried out on an Intel Core
2 Quad Q6600 system with 2.4GHz, 2GB DDR2-SDRAM,
and Windows 7 64-bit. The GPU used (in a PCIe 1.0
slot) was a NVIDIA GeForce GTX 260, which has CUDA
compute capability 1.3, 27 multiprocessors, 216 cores, and
896MB global memory.

The impact of the optimization steps described in section
4 was examined using the CUDA Analysis Tools (for the ex-
ecution times of the kernels) and the CUDA event framework
(for the total execution time of the algorithm) with an image
sequence of dimensions 240×256×21. Some parameters of
the algorithm have an influence on the execution time (e.g.
size of the local ST-slice). For these experiments, the default
parameters of the algorithm (see [5] for details) were used.

Table 1: Timing analysis for the unoptimized CUDA imple-
mentation.

Kernel % Time
[ms]

Calls

Total 100.0 212.25 1
Total Kernels 41.5 88.04 570

Transversal Filtering 16.2 34.42 84
Component Velocities 10.7 22.78 68
Longitudinal Filtering 6.6 13.91 84
Instantaneous Frequencies 3.8 8.13 76
Back-Rotating 2.2 4.60 136
Rotating 1.4 2.95 84
Optical Flow 0.4 0.89 17
Padding 0.2 0.36 21

Table 2: Timing analysis for the optimized CUDA imple-
mentation (see section 4).

Kernel % Time
[ms]

Calls

Total 100.0 96.65 1
Total Kernels 59.0 57.06 481

Component Velocities 24.3 23.50 68
Transversal Filtering 15.3 14.83 84
Instantaneous Frequencies 7.8 7.56 76
Longitudinal Filtering 7.3 7.02 84
Rotating 2.0 1.90 84
Back-Rotating 1.6 1.51 68
Optical Flow 0.8 0.74 17

The timing details for the unoptimized CUDA implemen-
taion can be found in table 1. The timing details for the op-
timized version (using the techniques described in section 4)
can be found in table 2.

Note that a separate padding step to extend the image di-
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mensions to a multiple of 16 was needed in the unoptimized
implementation. In the optimized version, where texture
memory is used as input for the first step (rotating), padding
can be done implicitly using the clamping addressing mode
of the texture memory.

By using vector data types, the number of calls to the
back-rotating kernel could be reduced by 50%.

Applying the techniques described in section 4, the exe-
cution times of the kernels could be reduced by up to 67%.
However, the most significant reduction in computing time
(both absolute and relative) was achieved on the CPU side
by optimizing the program structure.

Table 3 compares the optimized CUDA implementation
with a Matlab implementation for different image sequence
dimensions. Again, the default parameters of the algorithm
were used. In this case, the timing was measured using
Matlab. The execution times for the CUDA implementation
therefore also contain some Matlab overhead for setting up
the algorithm and calling the MEX file.

Table 3: Comparison of the Matlab and the CUDA imple-
mentation for different image sizes.

Image sequence size Matlab
[min]

CUDA
[sec]

Speedup

190×256×21 10.3 0.124 4977
240×256×21 12.8 0.141 5434
512×512×50 343.2 1.372 15009

When performing the Matlab algorithm on the largest im-
age sequence, Windows seems to run out of memory and
starts using the swap file extensively. The optimized CUDA
implementation can handle this image sequence without any
problems.

The maximum image sequence dimensions that can be
handled at once by the CUDA implementation depend on the
chosen parameters, mainly on the number of directions. In
our setup with a global memory of 896MB and four direc-
tions, the algorithm can handle 2344 frames of a 100× 200
image sequence or 70 frames of a 500× 1000 image se-
quence, for example. Longer sequences could be handled
by splitting them into batches.

6. PYRAMID ALGORITHM

With the Basic Algorithm described in section 2, velocities of
up to approximately 2 pixels/ f rame can be estimated with-
out aliasing. A common approach to avoid this problem is to
use a multiresolution scheme, where smoothened and down-
sampled versions of the original image sequence are used to
estimate a coarse estimation of the velocities first. These first
estimates are used on the next lower downsampling level to
refine the estimation (Pyramid Algorithm).

To refine the estimation on a lower level of the pyramid,
the rough estimation from the next higher level is used to
compensate the speed on the lower level before estimating
it. In our case it is easy to compensate speeds by integer
values by shearing the local ST-slice. Figure 3 illustrates this
concept.

The filled circle is the current pixel, for which the ve-
locity is being estimated. The line illustrates a feature orig-

time

space

uncompensated (ve=1.5) compensated (ve=0.5)compensating (1 pixel/frame)

Figure 3: Compensation of high speeds.

inally moving with 1.5 pixels/ f rame along the direction of
the directional filter. This movement is then compensated by
1 pixel/ f rame by looking at the values of a rhomboid-shaped
area of the ST-slice (empty circles) instead of using a rectan-
gular local ST-slice (dots). Estimating the velocity in this
compensated ST-slice gives a velocity of 0.5 pixel/ f rame.

With a downsampling factor of 2 in both spatial direc-
tions, the estimated (uncompensated) speed on a higher level
is half the speed that would be estimated on the next lower
level. Rounding the coarse estimates on a higher level to
multiples of 0.5 therefore gives integer compensation values
on the next lower level.

More illustrations and details about the actual implemen-
tation of this multiresolution scheme can be found in the orig-
inal work [5].

7. COMPARISON

In the original work [5], the results of the Pyramid Algorithm
were compared with other algorithms using several accuracy
measurements. In this paper we present the results of the
Fleets angular error measurement (in degrees) which takes
both the error in angle, and the absolute speed error into ac-
count [7]. We present only mean values here. More details
can be found in [5].

Table 4 compares the results of the Pyramid Algorithm
with the well-known Lucas-Kanade algorithm [8] (OpenCV
implementation of the multiresolution Lucas-Kanade algo-
rithm) for nine popular image sequences. Sequences num-
ber 1 and 2 are simple sequences from the University of
Western Ontario1. The Yosemite Cloudless sequence can be
downloaded from Brown University2. Numbers 4 to 9 are
more complex sequences with higher speeds from Middle-
bury College3.

For most of the image sequences, the accuracy of the
Pyramid Algorithm is better than or comparable to the ac-
curacy of the OpenCV implementation of the Lucas-Kanade
Pyramid algorithm. However, the problems of the Pyramid
Algorithm in the border regions due to the large spatial sup-
port of the directional filters (and the size of the local ST-
slice) were ignored by skipping the border region for the
evaluation. But this fundamental problem can also be seen
at other motion discontinuities, particularly in the Yosemite
Cloudless sequence, where the motion is undefined on one
side of the motion discontinuity.

8. CONCLUSION AND OUTLOOK

By efficiently implementing it with CUDA and extending it
to a multiresolution scheme, this algorithm based on direc-

1ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
2http://www.cs.brown.edu/˜black/images.html
3http://vision.middlebury.edu/flow/, see also [1]
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Table 4: Comparison of our algorithm with the Lucas-
Kanade Pyramid algorithm, using Fleets angular error in °.

Pyramid
Algorithm

Lucas-
Kanade
Pyramid

No. Sequence CUDA OpenCV

1 Diverging Tree 1.322 3.634
2 Translating Tree 0.581 0.307
3 Yosemite Cloudless 6.163 3.996
4 Rubber Whale 8.453 13.249
5 Grove 2 5.224 5.689
6 Hydrangea 7.562 8.336
7 Urban 3 16.105 11.369
8 Grove 3 12.556 12.483
9 Urban 2 28.559 18.692

tional filters became suitable for real-world and real-time ap-
plications.

Recent publications such as [9, 10] claim that realistic
speedups for a GPU implementation compared to a CPU im-
plementation are in the range of at most 10 times. In their
argumentation they refer to the inherent restrictions of cur-
rent GPU architectures, such as:

• Performance loss when accessing global memory in a
non-coalesced manner.

• The bandwidth bottleneck when transfering data between
CPU memory and GPU memory.

• The limited amout of fast on-chip memory (shared mem-
ory vs. cache).

• Weaker single-thread performance.
However, the severity of these limitations is highly depen-
dent on the type of algorithm at hand. For our algorithms, the
limitations for accessing the global memory were avoided by
cleverly using shared memory and texture memory. Further-
more, the transfers between host and GPU were reduced to a
minimum. Single-thread performance is not an issue in our
current implementation.

As a future work it would still be necessary to compare
the CUDA implementation with an optimized C implemen-
tation (instead of MATLAB).

As shown in section 7, the accuracy results of our algo-
rithm are good. However, there is still some room for im-
provement:

• Due to the large spatial support of the directional filter,
the algorithm has some problems handling motion dis-
continuities, particularly in the border regions of the im-
age sequence.

• In downsampled image sequences it is more difficult to
estimate the velocities reliably due to the smoothing of
the image features. Erroneous estimates from down-
sampled levels are then propagated to the full-resolution
level. Here, a more sophisticated postprocessing for the
rough estimates should be considered.
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