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ABSTRACT
We develop a new Synthetic Aperture Radar (SAR) algorithm
based on physical models for the detection of a Man-Made
Target (MMT) embedded in strong interferences. These phys-
ical models for the MMT and the interferences are integrated
in low-dimension subspaces. Our SAR algorithm consists of
applying the oblique projection of the received signal into the
target subspace along the interference one. We apply our al-
gorithms to FoPen (Foliage Penetration) detection. Its perfor-
mances are better compared to those obtained with previous
SAR algorithms: the MMT detection is highly improved and
the interferences are strongly rejected. We also study the ro-
bustness of our new SAR algorithm to interference modeling
errors. Finally, we present results on real data.
Index Terms— SAR processors, Subspace models,

Oblique projection, Statistical performances, FoPen.

1. INTRODUCTION

Detection of target in strong disturbance using Synthetic
Aperture Radar (SAR) is a current issue in the signal pro-
cessing community. More precisely, for FoPen (Foliage Pen-
etration) application, we want to detect a Man-Made Target
(MMT) located in a forest. In this forest environment, the
disturbance could be considered as the sum of deterministic
interferences caused by the trunks of trees and a random noise
caused by the foliage, the branches of the trees, . . .. By using
classical SAR images [1], MMT detection is almost impossi-
ble because a lot of false alarms remain.
We have proposed in previous works to reconsider the SAR
algorithms by including prior-knowledge based on simple
physical models of the MMT and the interferences. In the first
algorithm [2], the Signal Subspace Detector SAR (SSDSAR),
a MMT is assumed to be a set of plates whose scattering be-
longs to a low-dimension subspace. The SSDSAR consists of
projecting orthogonally the SAR received signal into the plate
subspace. Compared to classical SAR processors, the SSD-
SAR algorithm has shown a 5dB detection gain for single po-
larization [2] and a 8dB detection gain for double polarization
(HH and VV) [3]. Therefore, the SSDSAR allows to increase
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MMT detection in random noise; nevertheless, false alarms
due to the interferences remain high.

To reduce false alarms due to the interferences, another
SAR algorithm (SISDSAR for Signal and Interference Sub-
space Detector SAR) has been proposed in [4]. The interfer-
ences are assumed to be dielectric cylinders whose scattering
also belongs to a low-dimension subspace. The SISDSAR
consists of the difference of the orthogonal projection of the
received signal into the target subspace with the orthogonal
projection of the received signal into the interference sub-
space. Unfortunately, the SISDSAR may perform poorly: the
interference responses are widely decreased but the response
of the target may also be reduced.

We propose in this paper to develop a new SAR algorithm
(OBSAR for Oblique SAR) [5] in order to reduce false alarms
due to the interferences without degrading the MMT detec-
tion. As for the SSDSAR and the SISDSAR, prior knowl-
edge about MMT and interferences (trunks of trees) are inte-
grated in two low-dimension subspaces. The OBSAR based
on oblique projection [6] consists of projecting the received
signal into the target subspace along the interference one.
Compared to the SSDSAR, the oblique projection allows us
to reduce random noise and the interferences at the same time.
In addition, theMMT response is not reduced compared to the
SISDSAR. We compute and compare the performances of the
OBSAR and of the SSDSAR; as the SISDSAR can perform
poorly for some interference subspace, its performances are
not presented here. We also study the robustness of the OB-
SAR to interference modeling errors. Finally, we present re-
sults on real data from ONERA (the French Aerospace Lab).

The paper is organized as follows: Section 2 describes
first the SAR configuration and then the MMT and interfer-
ences modeling, Section 3 presents the OBSAR algorithm and
its performances are computed in Section 4. Section 5 gives
the different simulation results and images from real data are
presented in Section 6.

2. PROBLEM STATEMENT

2.1. SAR configuration and notations
In SAR configuration, we consider that an antenna evolves
along a linear trajectory; at each position ui, i ∈ !1,N" the an-
tenna emits a signal and receives the response from the scene
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under observation (see figure 1). The distance between adja-
cent positions is constant and equal to δu. The emitted signal
is a chirp in polarization H and V with a frequency band-
width B, a central frequency f0 and a duration Te. We denote
by zpi ∈ CK×1 the received signal samples at every ui posi-
tion of the antenna in polarization p (p=H or p=V) and K is
the number of time samples. The total received signal zp for
one polarization channel is the concatenation of the N vectors
zpi [2]:

zp ∈ C
NK×1

, zp =
[

zTp1 zTp2 . . . zTpN
]T (1)

The total polarimetric received signal z is then the concatena-
tion of zH and zV :

z ∈ C
2NK×1

, z =
[

zTH zTV
]T (2)

In this paper, we precise that only the co-polarized channels
are considered (H = HH and V =VV ).

Fig. 1. SAR geometry configuration.

2.2. MMT and interferences modeling
For FoPen detection, we consider two kinds of determinis-
tic scatterer: the MMT (signal of interest) and the trunks of
the forest (the interferences) which are the main cause of
false alarms. We model these scatterers by canonical ele-
ments which allow to generate a target and an interference
subspaces.

We suppose that a MMT can be seen as a set of perfectly
conducting (PC) plates with unknown orientations and whose
scattering is computed by using Physical Optics (PO) [7].
Moreover, we assume that for every possible orientations of
the plate at the position (x,y), its SAR response belongs to a
low dimension-subspace 〈Hxy〉 of rank DH [2]. The received
signal from a MMT at the position (x,y) is then written as:

z = Hxyλλλ xy (3)

where Hxy ∈ C2NK×DH is an orthonormal basis of the target
subspace 〈Hxy〉 and λλλ xy ∈ CDH×1 is an unknown coordinate
vector of z in the target subspace.

We assume that a trunk is modeled by a dielectric cylinder
with unknown orientations lying over a PC ground and whose
scattering is computed by using the Infinite Cylinder approx-
imation (IC) [7]. As for the target model, we suppose that for
each possible orientations of the cylinder at the position (x,y),

its SAR response belongs to a low rank subspace 〈Jxy〉 of rank
DJ [4]. The received signal from a trunk at the position (x,y)
is then written as:

z = Jxyµµµxy (4)

where Jxy ∈ C2NK×DJ is an orthonormal basis of the interfer-
ence subspace 〈Jxy〉 and µµµxy ∈ CDJ×1 is an unknown coordi-
nate vector of z in the interference subspace.

The generation of the subspaces is not described in this
paper and details can be found in [2] for the generation of
the target subspace at VV polarization. Polarimetric target
subspaces (HH and VV) are studied in [3]. Finally, the inter-
ference subspace generation is given in [4].

3. NEW SAR ALGORITHMS
3.1. SSDSAR
The SSDSAR algorithm developed in [2, 3] only uses the tar-
get subspace. We consider a MMT located at the position
(x,y) whose scattering is modeled as in Eq. (3) and corrupted
by n∈C2NK×1 which is a zero mean complex Gaussian noise
vector with known variance σ2. The intensity of the SSDSAR
image for the pixel (x,y) has be shown to be:

ISSD(x,y) =
‖λ̂λλ

SSD
xy ‖2

σ2
=

‖H†
xyz‖

2

σ2
(5)

We can easily demonstrate that the intensity of the pixel (x,y)
of the SSDSAR image is the orthogonal projection of z into
〈Hxy〉.

3.2. OBSAR
The OBSAR algorithm [5] uses the target and the interfer-
ence subspaces. We consider a MMT located at the position
(x,y) whose scattering is modeled as in Eq. (3); its response
is corrupted by n and the signal of a trunk whose scattering is
modeled as in Eq. (4). The received signal is then written as:

z = Hxyλλλ xy+Jxyµµµxy+n (6)

The unknown vector λλλ xy is estimated by using least square
method [6]:

λ̂λλ
OB
xy = arg

(

minλλλ xy,µµµxy ‖z−Hxyλλλ xy−Jxyµµµxy‖
2
)

= H†
xyEHxyJxyz

(7)

where EHxyJxy is the oblique projector into 〈Hxy〉 along 〈Jxy〉.
The intensity of the OBSAR image for the pixel (x,y) is then
defined as follows:

IOB(x,y) =
‖λ̂λλ

OB
xy ‖

2

σ2
=

‖H†
xyEHxyJxyz‖

2

σ2
(8)

Compared to the SSDSAR image, the intensity of the OB-
SAR image depends on the oblique projection of the received
signal z onto the target subspace along the interference one.

In terms of target detection, the SSDSAR and the OB-
SAR are developed to increase the MMT response embedded
in random noise. Concerning false alarms due to the trunks,
the SSDSAR and the OBSAR give different results. In the
SSDSAR image, the trunks have non-null responses while the
OBSAR is made to suppress them.
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4. STATISTICAL PERFORMANCES OF THE
SSDSAR AND THE OBSAR

In this section, we evaluate the statistical performances of the
OBSAR and we compare them to those of the SSDSAR. In
real environment, it is difficult to perfectly know the origin of
false alarms. For FoPen detection, false alarms are mainly due
to the trunks but branches and foliage of trees may also cause
false alarms. We then consider two cases for the interferences:
the ideal one in which the interference response totally lies in
the interference subspace and the realistic case in which a part
of the interference response does not lie in the interference
subspace. As we know that the target is a MMT, we assume
that its response totally belongs to the target subspace.

4.1. Probability of detection
Let us assume that only a MMT is located at the position
(x1,y1). For a given threshold η , the probabilities of de-
tection for the SSDSAR and the OBSAR are defined by
Pd = P(ISSD(x1,y1) > η) and by Pd = P(IOB(x1,y1) > η). We
derive then the distribution of each algorithm. From Eq. (5),
the distribution of the SSDSAR is [8]:

ISSD(x1,y1) ∼
1
2
χ2

(

2DH ,2
‖λ̂λλ

SSD
x1y1‖

2

σ2

)

(9)

where χ2(a,b) is the non-central χ2 distribution with a di-
mension a and a non-central parameter b. From Eq. (8), the
distribution of the OBSAR is [8]:

IOB(x1,y1) ∼
1
2
χ2

(

2DH ,2
‖λ̂λλ

OB
x1y1‖

2

σ2

)

(10)

4.2. Probability of false alarm Pfa
We consider now that an interference is located at the posi-
tion (x0,y0). The probabilities of false alarms for the two
algorithms are defined by Pfa = P(ISSD(x0,y0) > η) and by
Pfa = P(IOB(x0,y0) > η).
• Ideal case
We suppose that the interference scattering totally lies in
〈Jx0y0〉 as illustrated in Fig. 2(a). From Eq. (5), the distri-
bution of the SSDSAR then becomes:

ISSD(x0,y0) ∼
1
2
χ2

(

2DJ ,2
‖H†

x0y0Jx0y0µµµx0y0‖
2

σ2

)

(11)

If the two subspaces are orthogonal, the Pfa for the SSD-
SAR will not depend on the interference response. How-
ever, the target and interference subspaces are generally
not orthogonal which involves a dependence of this Pfa
to the relative position of the target and the interference
subspaces.
From Eq. (8), the distribution of the OBSAR is:

IOB(x0,y0) = 0∼
1
2
χ2

(

2DJ ,0
)

(12)

As the interferences are totally removed by the oblique
projection, the Pfa for the OBSAR does not depend any
more on the interference response.

• Realistic case
We suppose now that a part of the interference scattering
δδδ Jx0y0 does not belong to 〈Jx0y0〉 as illustrated in Fig. 2(b).
Therefore, we get the following received signal:

z = Jx0y0µµµx0y0 +δδδ Jx0y0 +n,

z ∼ N (Jx0y0µµµx0y0 +δδδ Jx0y0 ,σ
2)

(13)

where N (a,b) is the normal distribution of mean a and
variance b. From Eq. (5), the distribution of the SSDSAR
then becomes:

ISSD(x0,y0) ∼
1
2
χ2

(

2DJ ,2
‖H†

x0y0 (Jx0y0µµµx0y0 +δδδ Jx0y0 )‖
2

σ2

)

(14)

From Eq. (8), the distribution of the OBSAR is:

IOB(x0,y0) ∼
1
2
χ2

(

2DJ ,2
‖H†

x0y0EHx0y0Jx0y0
δδδ Jx0y0‖

2

σ2

)

(15)

Compared to the ideal case, the Pfa for the OBSAR de-
pends on the part of the interference response not de-
scribed by the interference subspace. Nevertheless, we
expect that the OBSAR gives better performances com-
pared to the SSDSAR in the realistic case; indeed as
shown in Fig. 2(b), the oblique projection of the interfer-
ence response into the target subspace is lower than the
orthogonal one.

(a) Ideal case

(b) Realistic Case

Fig. 2. Interference projections for the ideal (Top) and the
realistic (Bottom) cases.

5. SIMULATION RESULTS
5.1. Configuration
We consider a flight between the first position u1 =−50m and
the last position u200 = 50m with δu = 0.5m between each
position and an altitude of 100m. The full polarized emitted
signal is a chirp with f0 = 400MHz, B = 100MHz and Te =
2.10−7s. The radar scene is defined in [90,140]m for range
axis (x) and [−25,20]m for azimuth axis (y).
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To generate the bases Hxy and Jxy, we choose a PC plate
of size of 2m×1m for the model of the target and a dielectric
cylinder of height of 11m and of radius of 20cm lying over a
ground for the model of the interference. The subspaces 〈Hxy〉
and 〈Jxy〉 have the same rank 10 [2].

The MMT is a PC box with size 2m× 1.5m× 1m lying
over a PC ground whose scattering is simulated with FEKO
[9]. For the ideal case, the interference is a dielectric cylinder
over a PC ground as for the interference subspace generation.
For the realistic case, the interferences are trunks over dielec-
tric ground simulated with COSMO [10] which is a software
dedicated to the realistic simulation of forest scattering. Com-
pared to the ideal case, the ground here is not PC and the at-
tenuation due to the foliage of the forest canopy is taken into
account. In both cases, the Signal to Interference Ratio is
equal to −10dB. A very high Signal to White Noise Ratio of
35dB is chosen in order to study especially the contribution
of the interferences in the performances and the robustness of
both algorithms.

Classical SAR algorithms results on these simulated data
are not presented here. In the classical SAR images, the target
response is very low and the trunks ones are very high. These
images can be found in [2].

5.2. Receiver Operating Characteristics (ROC)
To evaluate the performances of the SSDSAR and the OB-
SAR, the ROC, Pd versus Pfa, are plotted in Fig. 3(a) for the
ideal case and in Fig. 3(b) for the realistic case. For the ideal
case, we reach a Pd higher than 0.9 for a Pfa higher than 10−5
in the OBSAR and a Pfa higher than 7.10−2 in the SSDSAR.
First, poor performances of the SSDSAR compared to the per-
formances of the OBSAR show that the target and the inter-
ference subspaces are not orthogonal. Therefore, the oblique
projection of the OBSAR algorithm is needed for a complete
removal of the interferences and for obtaining great perfor-
mances. For the realistic case, we reach a Pd higher than 0.9
for a Pfa higher than 0.3 in the OBSAR and a Pfa higher than
0.7 in the SSDSAR. Performances of the SSDSAR and the
OBSAR are degraded compared to those obtained in the ideal
case. This is explained by the foliage attenuation and the di-
electric ground which are not taken into account in the inter-
ference subspace. However, the OBSAR still outperforms the
SSDSAR which shows the interest of the oblique projection.

5.3. Images
The images obtained by the SSDSAR and the OBSAR in the
realistic case are shown in Fig. 4(a) and Fig. 4(b). In both
images, the target pixel has the highest intensity. In the SSD-
SAR image, we have a difference of 1.5dB between the tar-
get intensity and the maximum of the interference intensities.
This result becomes 3dB in the OBSAR image. Therefore,
the OBSAR leads to a reduction of false alarms compared to
the SSDSAR.

6. REAL DATA IMAGES
6.1. Configuration
The real SAR data presented in this section have been ac-
quired during the PYLA’2004 campaign (Landes, France), us-

(a) Ideal case

(b) Realistic Case

Fig. 3. ROC plots for the SSDSAR and the OBSAR in the ideal
case (Top) and realistic (Bottom) cases.

ing the SAR system RAMSES from ONERA at frequencies
between 400MHz and 470MHz and with an incidence angle
of 59.8◦. For more details on the Nezer forest, see [10]. The
target is a truck with an orientation parallel to the radar flight
and placed in the forest of pines.
To generate the bases Hxy and Jxy, we choose a PC plate of
size of 4m× 2m for the model of the target and a dielectric
cylinder of height of 11m and of radius of 20cm lying over a
PC ground for the model of the interference. The subspaces
〈Hxy〉 and 〈Jxy〉 have the same rank 10.

As for the simulated data, the classical SAR images are
not presented here and can be found in [2]: the truck is not
visible and the forest causes many false alarms.

6.2. Images
We present the images given by the SSDSAR in Fig. 5(a) and
by the OBSAR in Fig. 5(b). First, we clearly distinguish the
truck from the environment in the SSDSAR and the OBSAR
images. Secondly, we see that the background intensity is
slightly reduced in the OBSAR image. More precisely, we
have a difference of 1.7dB between the target intensity and
the maximum of the interference intensities in the SSDSAR
and a difference of 2.3dB for the OBSAR image. The OB-
SAR shows then better performances than the SSDSAR in
terms of false alarms reduction.
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(a) SSDSAR

(b) OBSAR

Fig. 4. SSDSAR and OBSAR images for realistic simulated
data. A box over the ground located at (108,−1,0)m is
placed in a forest of trunks.

Finally, these results show the robustness of our algorithms
to the target modeling. As discussed in section 4.2, the per-
formances of the OBSAR depend on the modeling errors on
the interferences. So, we expect to have a limited reduction
of the false alarms. Nevertheless, we observe in Fig. 5(b) that
the OBSAR still outperforms the SSDSAR.

7. CONCLUSION

We proposed a new SAR processor for FoPen application, de-
noted by OBSAR, based on oblique projection in order to im-
prove target detection and to reject interferences. We com-
puted the statistical performances of the OBSAR and com-
pared them to those of the SSDSAR (developed in a previous
work): the OBSAR outperforms the SSDSAR. In order to use
the OBSAR in realistic cases, we also studied its robustness
to interference modeling errors. Even if the performances are
then degraded, false alarms due to the interferences are re-
duced. Finally, we confirmed these results on real data. For
future work, it is needed to improve the interference modeling
to obtain better false alarm reduction. For example, principal
branches responses and foliage attenuation effects could be
included in our interferences model. It would also be interest-
ing to use cross-polarized channels in order to improve target
detection and false alarms reduction.

(a) SSDSAR

(b) OBSAR

Fig. 5. SSDSAR and OBSAR images for real data. A truck
located at (5550,150,0)m is placed in the Nezer forest.
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