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ABSTRACT

This contribution to acoustic source localization presents a
robust approach verified with ten distributed microphones
in a laboratory apartment under reverberant acoustic condi-
tions. Based on the classical steered response power phase
transform (SRP-PHAT) algorithm, three optional extensions
are presented: A method for selecting suitable microphone
pairs, a spatial Wiener-type filtering for the suppression of
artifacts in the spatial likelihood function (stemming from
background noise), and finally smoothing of the spatial like-
lihood function. Simulation results show a significant im-
provement compared to SRP-PHAT in all noise conditions.

1. INTRODUCTION

The knowledge of a speaker’s position can be useful in many
respects and has therefore been investigated intensively dur-
ing the last two decades. Applications include teleconfer-
encing, smart rooms [ 1], and acoustic surveillance for safety
and security purposes [2]. A recent topic finding increasing
attention is ambient assisted living, i.e., technologies sup-
porting the elderly in their home environment. Here, position
tracks of the inhabitant can directly deliver information about
the health status or untypical behavior, e.g., if the person
has tumbled [3]. Additionally, the speaker’s position offers
the opportunity for further processing, like beamforming and
distant speech recognition. A person’s position inside a room
can be obtained in many different ways, all of which suffer
from specific problems. Camera solutions are often rejected
due to privacy reasons, pressure sensitive carpets are rela-
tively expensive, other systems do even need active elements
worn at the person’s body or clothes. Given the inhabitant is
speaking or even crying for help, microphones, however, are
a good compromise since they are cheap, small, and already
ubiquitous (think of fixed and mobile telephones). They can
also be used for further applications in parallel, e.g., voice
control or hands-free telephony (emergency call). But they
suffer from adverse acoustical conditions like reflections, re-
verberation and noise.

The minimum number of microphones for obtaining the
position of an acoustic source is three. However, often times
significantly more microphones are used [4]. They can be
clustered yielding microphone arrays as proposed in [1, 5]
or distributed loosely on walls or on the ceiling [6]. Other
approaches use distributed microphone arrays [7]. In or-
der to reduce complexity and to increase robustness, a spa-
tial observability function has been introduced in [7] as a
confidence measure. Another recent approach is to draw
even advantage of the first reflections [8]. In some contri-
butions, e.g., [9], an energy detector is proposed for a pre-
classification of suitable speech frames. Estimation results

can be further enhanced and misleading maxima be reduced
by smoothing the spatial likelihood function in space and
time. In recent years, also particle filters have been proposed
for localization purposes [10].

Our approach for speaker localization has been devel-
oped in the context of an installation of ten single micro-
phones distributed approximately equidistantly on the walls
surrounding a room of a laboratory apartment. We chose the
steered response power phase transform (SRP-PHAT) algo-
rithm [11] as baseline which in principle has been shown to
be quite robust against reverberation [12].

Based on that we propose three extensions, each of which
can be applied separately or in combination. First, we present
an efficient spatial observability function which is derived
from the cross-correlation function. We use this function for
selecting good microphone pairs before fusing their contri-
bution prior to localization. Second, we present a spatial
Wiener-type filtering approach which suppresses the influ-
ence of noise sources on the speaker position estimation.
Third, smoothing of the spatial likelihood function is applied.
It is worth mentioning that the proposed approaches are suit-
able for real-time speaker tracking.

This paper proceeds with introducing the applied signal
model and revisiting the fundamental localization algorithm
SRP-PHAT in Section 2. Based on this, we propose our new
three approaches in Section 3, comprising a microphone pair
evaluation and selection, the Wiener-type filtering, and spa-
tial smoothing. Simulation results on recordings in a labo-
ratory apartment are presented in Section 4 before drawing
conclusions in Section 5.

2. BASELINE ALGORITHMIC APPROACHES
2.1 Signal Model

Given a room with distributed microphones and a talking per-
son who shall be localized. A certain number M of micro-
phones p, 1 < u <M, with outputs y, (¢) are located at posi-
tion (vector) ry, respectively. A speech signal s(z) is emitted
from the sound source position ry, which for the moment is
assumed to be time-invariant. It is then convolved with the
impulse response £, (¢) and subject to additive environmental
noise n(t) at microphone u, which leads to

yu(t) =hu(t) s(t) +nu(t). (1)
Neglecting the reverberation we obtain
yult) =ap-x(t — ) +nu(t), (2)

where ay, is an attenuation factor and

ry—r
Ty_ = T”(I‘ZI‘S) = Q (3)
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Figure 1: Block diagram of the entire localization system

being the time needed by the sound waves to travel from r; to
ry, at a velocity of ¢ = 343 m/s. Regarding two microphones
Uand v,

def
Tuy = Tv — Ty 4)

is the time difference of arrival (TDOA).

2.2 GCC-PHAT

In order to estimate the TDOA for a given microphone pair
the cross-correlation function of the sampled microphone
signals yy (n) and yy (n) with discrete time index # has to be
computed. This can be achieved by applying a rectangular
window of length K, computing the discrete Fourier trans-
forms Y, (k) and Yy (k) (a frame index ¢ is mostly omitted in
the rest of the paper) with frequency bin k, and computing
the following inverse DFT:

1K1

Puv(T Z Yu(k ej27t % (5)

with ()* denoting the complex conjugate. To achieve a gen-
eralized cross-correlation (GCC) function a complex-valued
factor Gy is included into (5) leading to [13]:

lKl

Z Guv(k

In a reverberant near-field speaker-microphone scenario, it is
not reasonable to take signal attenuation into account. Hence,
a phase transform (PHAT) is applied by choosing [13]

G (k) = GEAT () =

Yu ()Y ()|

GCC

PSS Y (k)P % (6)

)

which finally leads to
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The estimated TDOA between signals y and v is then given
by

®)

) ©)

2.3 Steered Response Power (SRP)

Due to reflections the GCC function (8) usually shows sev-
eral local maxima which can lead to a wrong estimation of
Tuy in (9). Varying 7 in (8) corresponds to steering a beam-
former over the search space and measuring the output power
(steered response power (SRP)). As each pomt r in the spa-
tially discretized search space %, with Z C R? or Z C R3,
for instance, corresponds to a certain TDOA 7, for each
microphone pair (it,v) € &2, a specific generalized cross-
correlation function (pP HAT (7 = 1 (r)) with

Tuv () = T (1) — 7y (r) = %(|r,1 —H—|r 1) (10)

can be obtained. Expressed as a function of r, the GCC func-
tion can be interpreted as a spatial likelihood function (SLF)

Suv(r) = ‘PESAT(TMV(T)) (11

Z GPHAT

/,Lv( )

W)Yy (ke 2Tx T (12)

for microphone pair (i, V). Please note, that especially (11)
contributes significantly to computational complexity. Hav-
ing more than one microphone pair enables us therefore to
postpone the actual localization decision as the total spatial
likelihood function at point r regarding all microphone pairs
can first be expressed as

So(r) = :

— Suv(r). 13
|9|(“Z ﬂ(r) ( )

V)eP

The estimated sound source position

A

s = argmax S (r) (14)
re#

is then typically chosen as maximum of the total spatial like-
lihood function.

3. NEW APPROACH

Fig. 1 shows the block diagram of the entire localization sys-
tem. Prior to all further processing, a voice activity detec-
tion (VAD) is applied on the microphone signals. The sig-
nals are then transformed frame-by-frame into the frequency
domain by a fast Fourier transform (FFT) and fed into the
GCC-PHAT, where the cross-correlation between each mi-
crophone pair (i, V) is computed. Based on this, a peak-to-
average ratio (PAR) can be calculated, which can be used for
selecting suitable microphone pairs in the next block (Sec-
tion 3.1). Their cross-correlation functions (pP HAT (1) are the
inputs for achieving the steered response powers (SRPs) in
the form of spatial likelihood functions (SLFs), which are
then joined to a global SLF S 4, (r). Now, an optional spatial
Wiener-like filtering can be applied to reduce artifacts stem-
ming from disturbing noise sources (Section 3.2), followed
by an optional spatial smoothing function (Section 3.3). The
speaker position is finally estimated by choosing the maxi-
mum value of the resulting spatial likelihood function.



3.1 Microphone Pair Selection and Fusion

Regarding changing acoustical properties like room impulse
response or speaker directivity, it is recommended to contin-
uously compute a confidence measure for each microphone
pair (i, v) € & in order to identify the most promising mi-
crophone pairs. This allows to focus the costly computation
of (11) only on these microphone pairs. We propose the
squared ratio of the (strongest) maximum to the average of
the cross-correlation function (8) and call this kind of spatial
observability function a peak-to-average ratio (PAR):
max b ()
PAR,y = , (15)
g @Zre@ (puvAT(T>

with 9 = [Tmin Tmax] being the set of all possible values
of 7 for the given microphone positions (u,V) in search
space Z. A single maximum leads to a high (good) PAR,
whereas reflections decrease the confidence in the TDOA es-
timate for the respective microphone pair. This approach
can also deal well with defective microphones as the PAR
for affected palrs decreases significantly. As there exist
|2| = 0. 5(M — M) possible combinations for M applied
microphones!, it might also be useful to exclude obviously
unsuitable pairs for efficiency purposes. We suggest to take
only the N microphone pairs having the N highest PAR val-
ues, with 2 <N < || and define the resulting subset as Py.

Using only the selected microphone pairs in (13), we
achieve

Z Suv(r). (16)

At this point, one could already apply

P, = mgmaé}S@N( ) a7

to achieve a potentially better localization performance com-
pared to using (13) and (14).

3.2 Spatial Wiener-type Filtering

In order to reduce acoustic disturbances, we propose a spa-
tial noise and reverberation suppression by using a Wiener-
type filter. At first, a voice activity detection VAD, € {0, 1}
for each channel u has to distinguish between frames where
speech is present or absent. We use a very simple energy-
based algorithm in the time domain. Its decisions are then
joined for a global voice activity decision

1, if ¥M_ VAD, > 4P

0, else. (18)

VAD = {
In case of global speech absence (VAD=0), we estimate

a noise floor (NF) of the SLF simply by
SNE(T) = Sz, (1). (19)

In case of global speech presence (VAD=1), an upper
threshold

S, =min [ — S r
Py (I%’I r;@ oy (1)

, Ocl-max(ngN(r))> (20)
re#

'For M = 3 microphones, we would get 22 = {(1,2),(1,3),(2,3)}.
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Figure 2: Example of a spatial likelihood function for speech pres-
ence before (upper) and after (lower) Wiener-type filtering at an
SNR of 0dB. The noise source’s position is r, = (1.50m, 1.90m),

the speaker is at rg = (1.01m,0.89m).

with 0 < a; < 1 is defined first. It is then further used to
delete potential speaker positions from the desired noise floor

SNE(r) = min(S 4, (r), (Xz-syN) 21

with o > 1.

In both cases, speech absence and speech presence, a
(spatial) lowpass filter is applied on Snr(r) leading to Sng(r),
followed by a (temporal) first-order IIR filter with forgetting
factor B and frame index ¢, according to

§NF,Z(1') =p '§NF7Z—1 (r)+(1—=PB)-Snre(r). (22)

We initialize with Snro(r) = 0. In case of speech absence,
processing for the current frame ¢ stops and subsequent func-
tions in Fig. 1 are not executed.
In case of global speech presence, a spatial a posteriori
signal-to-noise ratio (SNR)
5%, (r)

SNR(r) = SIZ\IF(I‘)

can then be defined with the denominator being the squared
noise floor of the SLF and the numerator being the squared
noisy SLF from (16). This a posteriori SNR is then used in
a Wiener-type filter to obtain the enhanced spatial likelihood
function?

(23)

max(SNR(r) —

SNR(r)
An example of the SLF in search space Z is shown in Fig. 2,
S, (r) being drawn in the upper part, S%V (r) being shown
in the lower subfigure.

1,0)

(24)

Sy (1) =Sz (r)-

2Note that the respective a priori SNR would be SNR® = SNR — 1 lead-
ing to the typical Wiener filter formulation SNR?/(1 + SNR?).
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Figure 3: Room in the laboratory apartment with M = 10 micro-
phones and 10 speaker position markers rg (solid circles). The
signal model for one position and one microphone pair (i, Vv) is
depicted exemplarily. r,, and r,, represent the noise source posi-
tions.

3.3 Spatial Smoothing

Without loss of generality we assume a 2-dimensional local-
ization task. As the spatial likelihood function (SLF) may
show many local maxima, we propose to smooth the SLF

S(?,p:v (r) resulting in

<opt

Py (25)

(re,ry) = H(ry,1y) * S;l?;(rx, ry),

using the 2-dimensional Gaussian lowpass filter transfer

function

- r;%#»r)zv
202 .

1
e
2mo?

H(ry,ry) =

(26)

Note that if spatial Wiener-type filtering has been omitted,
Sf;gltv(rx, ry) in (25) just has to be replaced by S, (7, 7y).

4. SIMULATION RESULTS
4.1 Data Acquisition

The data was recorded in a furnished laboratory apartment
using M = 10 small omnidirectional electrostatic micro-
phone capsules that are stuck directly to the wall at a height
of 1.5 m. Ten representative speaker positions within an area
of about 4 x 3 = 12m? were chosen as shown as solid cir-
cles in Fig. 3. The overall area of the combined kitchen
and living room amounts to 29 m? and has a measured re-
verberation time of RT¢y =~ 0.6s. Four utterances (2 male /
2 female) from the 16 kHz NTT speech database [14] were
played back by a broadband loudspeaker located at the given
speaker positions ry and a height of 1.5m. To simulate dif-
ferent head orientations of a human speaker, the recordings
were repeated with the membrane directed towards the four
cardinal directions, respectively. The microphone signals
were sampled at a sampling frequency of f; = 48kHz for
optimal hardware performance and were later downsampled
to f; = 16 kHz for the simulations. To investigate the influ-
ence of noise, white noise was played back from two dif-
ferent positions r,, and r,, separately. The desired signal-
to-noise ratios (SNRs) from —20dB to +5dB were chosen
in steps of 5dB and are related to the outputs of the speech
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and noise loudspeakers, respectively. The SNR can be cal-
culated as SNR = ASL; — RMS,, with ASL; being the active
speech level of the clean speech signal and RMS,, being the
root mean square of the noise signal. Note that both are com-
puted using ITU-T Recommendation P.56 [15].

4.2 Performance Metrics

As proposed in [5] we chose two different metrics for evalu-
ating the performance of the localization algorithm. At first,
the miss ratio (MR) is defined as the percentage of processed
frames, where the estimated position has a Euclidean dis-
tance of more than 0.25m from the correct position. Sec-
ondly, the average estimate error (AEE) is the average dis-
tance to the correct position for all non-missed frames.

4.3 Experimental Results

The common settings for the performed experiments were as
follows: The discrete search stepsize was 2 cm and the length
of the SRP-PHAT (or DFT) frames was K = 4096 samples
with no overlap and all 0.5(M? — M) = 45 possible micro-
phone pairs were taken in (16). The parameters for estimat-
ing the noise floor in (20) and (21) are set to ¢y = 0.9 and
0p = 1.05,and B = 0.8 in (22). For spatial smoothing based
on the lowpass filter in (26), we chose 0 = 6 cm.

For each of the ten speaker positions, marked with solid
circles in Fig. 3, the localization was performed on 16 clean
speech samples. Additionally, each of the samples is sub-
ject to additive noise in 6 different SNR conditions for the
two different noise source positions r,, and r,,, separately,
resulting in 16 X 6 X 2 = 192 noisy samples per speaker po-
sition. This leads to 10 x (164 192) = 2080 processed sam-
ples, each of which results in approximately 20 position es-
timates. We did not differentiate between gender, cardinal
directions, and noise source positions, which led to averaged
results for each speaker position depending only on the SNR
as shown in Fig. 4.

The dotted line represents the standard SRP-PHAT al-
gorithm (13), (14), which performs acceptably under clean
speech conditions, with 7% of the frames being missed.
The miss ratio (MR) increases continuously with decreasing
SNR. At an SNR of 0dB, more than 51% of the frames are
missed.

The Wiener-type filtering (WF, (24)) reduces the MR to
2%—-40%, while spatially smoothing the SLF (Smooth, (25))
yields results between 5%-23%, both with significantly de-
creasing miss ratio towards higher SNR values. An almost
SNR-independent localization method is achieved by com-
bining both approaches (solid line) showing an additive gain.
A MR between only 1%—8% is achieved.

The MR is a measure for the robustness of the localiza-
tion algorithm. To evaluate the precision of the proposed ap-
proach, Table 1 shows the average estimate error (AEE) for
the respective cases. There is only a slight decrease of preci-
sion using the proposed approaches. When both Wiener-type
filtering and smoothing are applied, the AEE remains almost
constant at 5.4cm for all SNR conditions. The reason for
higher precision at low SNR values is, that only non-missed
frames are evaluated for obtaining the AEE.

In a second simulation we evaluated the microphone pair
selection as proposed in Section 3.1. We reduced the maxi-
mal amount of 0.5(M? — M) = 45 pairs to those N = 30 and
N = 15 pairs revealing the highest PAR;, values, respec-
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Figure 4: Average miss ratios (MR) for different SNR conditions.

SNR/dB S5 0 5 10 15 20 o
Standard SRP-PHAT| 2.0 19 25 3.1 34 3.6 3.6
WF 25 25 32 35 37 38 3.7
Smooth 40 44 47 49 50 50 49
WE, Smooth 5.1 55 55 55 55 54 54

Table 1: Average estimate error (AEE) in cm for different SNR
conditions, only for non-missed frames.

tively. The results in Fig. 5 show that for the WF, Smooth
approach a selection of only N = 15 pairs is still better than
the standard SRP-PHAT with N = 45 pairs. For moderate
noise (SNR > 15dB), one third of the pairs can be left out
with only marginally increasing the miss ratio. The addi-
tional computational complexity of all investigated algorith-
mic options does not exceed 5% of standard SRP-PHAT.

5. CONCLUSIONS

We proposed a speaker localization system using distributed
microphones based on the well-known SRP-PHAT. Besides
an efficient procedure to select relevant pairs of microphones,
our approach comprises a Wiener-like filtering of the spatial
likelihood function, as well as spatial smoothing. The latter
two proposed algorithms allowed for a significantly lower
miss ratio (1%—8%) than SRP-PHAT (7%-51%), while the
estimation error of non-missed frames is only marginally
raised to approximately 5 cm.

The whole system is easily scalable by using the micro-
phone pair selection option and suitable for real-time speaker
localization.
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