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ABSTRACT

Spatial sound rendering techniques are based on established
theoretical frameworks. The theoretical wave field predicted
by the underlying of a specific rendering technique is an ap-
proximation of the desired ideal wave field. Moreover the
practical implementations require often compromises which
cause an additional deviation of the rendered wave field from
the desired one. To assess these deviations, metrics are de-
vised which quantify the difference of two wave fields. Typ-
ically they rely on the comparison of the wave fields at a
discrete set of positions in the area of interest (discrete-space
metric). In this paper a novel metric is proposed which is
formulated in the angular frequency domain. It expresses the
difference of two wave fields in terms of their Fourier series
angular coefficients. It is efficient since it avoids the spatial
summation over a discrete grid in the area of interest, more-
over it is flexible since it considers a weighting function to
focus the evaluation on specific regions of spatial and tem-
poral frequencies. After a theoretical treatment such a metric
is computed for simulated and measured data and compared
with a discrete-space metric. The comparison shows that the
new metric yields results which allow a flexible assessment
of the characteristics of the rendering techniques.

1. INTRODUCTION

Spatial sound rendering techniques like Wave Field Synthe-
sis (WFS), Higher-Order Ambisonics (HOA), Vector Based
Amplitude Panning (VBAP) are based on established theo-
retical frameworks. Necessarily the theoretical wave field
predicted by the underlying theory of a specific rendering
technique is an approximation of the desired wave field and
presents to some extent a deviation from it. Such a deviation
may be evaluated by comparing the analytic description of
the desired and theoretical wave fields, where the latter is de-
rived under ideal conditions (i.e. the loudspeaker array of the
reproduction system is generally described by a distribution
of ideal point sources and the acoustic chamber is considered
as perfectly anechoic). Examples of theoretical comparisons
between rendering techniques can be found in [1, 2].

However the implementation on real reproduction sys-
tems involves a number of non-idealities of both loudspeak-
ers and environment which alters further the quality of the
rendered wave field with respect to the desired one. In order
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to evaluate this additional degradation, methodologies for ac-
curately measuring the rendered wave field inside the listen-
ing area are required. Finally to asses the performance of
different rendering techniques it is necessary to define met-
rics suitable to quantify the mentioned deviations in a concise
fashion.

These issues have been already tackled by the authors
in [3], where a well-established technique for the measure-
ment of a wave field is employed. The rendered wave field
is sampled over a circle with a pair of rotating microphones,
then the rendered wave field inside and outside the circle is
extrapolated by means of the circular harmonic decomposi-
tion [4]. In order to compare theoretical and measured wave
fields with the desired one, in [3] a discrete-space evaluation
metric based on the spatial Root Mean Square Error (RMSE)
is proposed. Such a metric is computed for simulated and
measured data and it is shown that it captures the subtle
differences of theoretical and rendered wave fields even in
controlled environments (quasi-anechoic chamber and high-
quality loudspeakers).

This paper presents an alternate metric in the angular fre-
quency domain for evaluating the ability of a wave field ren-
dering technique to reproduce a desired sound field. Such
a metric is a prerequisite for a subsequent perceptual eval-
uation which is topic of ongoing research. It expresses the
RMSE of two wave fields in terms of their Fourier series an-
gular coefficients. Such a novel metric is computed for the
same data considered in [3] and it is shown that the new
metric yields results which allow a flexible assessment of
the characteristics of the rendering techniques. The paper
is structured as follows. Sec. 2 briefly reviews the descrip-
tion of a wave field in spherical and polar coordinates and
explains the role of the Fourier series angular coefficients. It
also specifies the concepts of desired, theoretical and mea-
sured wave fields. Sec. 3 introduces the idea of an evaluation
metric for comparing different wave fields based on the er-
ror energy. Sec. 4 shows the derivation of a metric based
on the Fourier series angular coefficients, while in Sec. 5 the
results obtained with the new metric are compared with the
ones from [3]. Finally Sec. 6 draws some conclusions.

2. REPRESENTATION OF WAVE FIELDS IN
SPHERICAL AND POLAR COORDINATES

2.1 3D Spherical Coordinates

The Fourier transform of three-dimensional wave fields with
exterior sources can be expressed in spherical coordinates as
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sum of spherical harmonic functions Ym
n (θ,φ)

P(ω,ρ,θ,φ) =
∑

n,m

Anm(ω) jn

(

ω

c
ρ

)

Ym
n (θ,φ) , (1)

where ω is the temporal frequency, ρ the radius, θ and φ

are zenith and azimuth angles, respectively and jn
(

ω
c
ρ
)

the

spherical Bessel functions. Definitions and properties of
these functions and of the spherical coordinate system are
chosen as in [5]. The radius independent spherical harmonic
coefficients Anm provide an exact representation of 3D wave
fields. However they are hard to compute analytically and
their determination from measurements is restricted to low
orders. Exact determination of high order coefficients from
measurements would require high resolution sampling on a
sphere (see [6] and references cited there).

Much less involved is the description and the measure-
ment process of two-dimensional wave fields in polar coor-
dinates.

2.2 2D Polar Coordinates

A two-dimensional wave field can be represented in polar
coordinates with radius ρ and angle φ by a Fourier series with

coefficients P̊ν(ω,ρ) [7]

P(ω,ρ,φ) =

∞
∑

ν=−∞

P̊ν(ω,ρ)e
jνφ =

∞
∑

ν=−∞

Cν(ω)Jν(kρ)e
jνφ. (2)

It is well known that 2D wave fields are described exactly
by the circular harmonic coefficients Cν(ω). They are inde-
pendent of the radius ρ, which is in turn represented by the
Bessel function Jν(kρ) with k = ω/c. The analytical determi-
nation of the circular harmonic coefficients involves an inte-
gration with respect to the angle φ. Thus they are in general
easier to evaluate than the spherical harmonic coefficients
which require integration with respect to two angles. They
can also be obtained from measurements of real sound fields
on a circle. Suitable devices and evaluation methods are de-
scribed e.g. in [8, 9, 10, 11, 12].

From a practical point of view it is then clear that the
2D approach is more attractive, but the use of a 2D repre-
sentation for evaluating real 3D wave fields requires further
considerations.

2.3 Relation between 2D and 3D Representations

The connection between the 2D and 3D representations from
Sec. 2.1 and Sec. 2.2 can be established by observing that
measuring on a circle is equivalent to sampling the zenith
angle 0 < θ < π with only one sample at θ = π2 . This case is
investigated in [8, Sec. 4.4]. The following conclusions can
be drawn:

• The coefficients Anm for the same mode number m but
different value n cannot be separated (order aliasing).

• An exact reconstruction of 3D wave fields from 2D cir-
cular measurements is not possible.

• Nevertheless, circular measurements are very useful for
3D wave fields with certain restrictions (e.g. weak floor
and ceiling reflections, etc.).

• In particular, results from circular measurements can be
still employed to compare different wave fields. They
truly represent a wave field at the measurement positions

but should not be used to extrapolate a general wave field
to other positions in space unless significant a priori in-
formation is available (see [8]).

Considering the above reasoning in this paper still a 2D
representation is chosen, but the wave field extrapolation in-
side and outside the circular area is avoided. This means that
the wave field analysis is limited to the Fourier series angular

coefficients P̊ν(ω,ρ) instead of the circular harmonic coeffi-
cients Cν(ω). Actually the former ones are not radius inde-
pendent, but they still provide the required spatial resolution
information. In the following examples the desired, theoreti-
cal, and measured sound fields are expressed in terms of their
Fourier series angular coefficients.

2.4 Wave Field Representations

2.4.1 Desired Wave Field.

The term desired wave field or target wave field indicates
the analytic description of a wave field to be reproduced by
means of any of the above mentioned rendering techniques.
The Fourier series angular coefficients of the desired sound
field can be obtained directly from the given analytic descrip-
tion. Consider the example of a plane wave from the direc-
tion φ0

P(ω,ρ,φ) = P(ω)e jkρcos(φ0−φ). (3)

Expanding into a Fourier series w.r.t. φ gives the well-known
Jacobi-Anger expansion [7]

P(ω,ρ,φ) =

∞
∑

ν=−∞

jνP(ω)e− jνφ0 Jν(kρ)e
jνφ , (4)

where the comparison with (2) shows that

P̊ν(ω,ρ) = jνP(ω)e− jνφ0 Jν(kρ) . (5)

The analytic expression of the angular Fourier coefficients
may be not straightforward in some cases, nevertheless it is
always possible to obtain the value of the coefficients numer-
ically by computing the fast Fourier transform of the target
wave field with respect to the angle φ for a given radius ρ0.
This procedure is described for example in [8].

2.4.2 Theoretical Wave Field.

The term theoretical wave field indicates the analytic descrip-
tion of a field produced by a number of loudspeakers at po-
sitions pppi as shown in Fig. 1. Different rendering techniques
may produce different theoretical wave fields which approxi-
mate the same desired wave field. The Fourier series angular
coefficients follow in a similar way as for the desired wave
field by expanding the sound field produced by each loud-
speaker into its individual angular coefficients and superim-
posing all loudspeakers. The loudspeakers may be modelled
as point sources unless a more elaborate loudspeaker model
is available.

2.4.3 Measured Wave Field.

For real wave fields the Fourier series angular coefficients
can be obtained directly from measurements on a circle of
radius ρ0. The integral for the determination of the Fourier
coefficients is approximated by a DFT with respect to the az-
imuthal angle φ. Thus wave fields of different nature can be
compared to each other directly on the basis of their respec-

tive coefficients P̊ν(ω,ρ0). This procedure is shown in Sec. 4.
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Figure 1: A very general model of a rendering system,
sss1,2,V represent the desired virtual sources to be reproduced
(see [3]).

3. METRICS FOR THE COMPARISON OF WAVE
FIELDS

It is possible to define different error energy metrics for the
comparison of wave fields. Consider two wave fields P(ω,qqq)
and S (ω,qqq) where P is the desired wave field and S stands
for any two of the theoretical or measured wave field. The
space coordinate for the region of interest (grey shaded area
in Fig. 1) is denoted with qqq, where no special coordinate sys-
tem is assumed yet.

A first approach resembles the idea of measuring the
wave fields at many positions qqqi, i = 1 . . .Q (discrete-space)
and comparing the resulting signals. An actual measurement
at many positions is impractical, nevertheless, such an imag-
inary measurement setup provides a straightforward way to
the definition of a normalized error energy metrics as

e2
d(ω) =

Q
∑

i=1
|P(ω,qqqi)−S (ω,qqqi)|

2

Q
∑

i=1
|P(ω,qqqi)|

2

, (6)

where the normalization with respect to the energy of the
whole desired wave field gives insight into the effective
amount of the error. An equivalent metric is used for ex-
ample in [2]. The corresponding normalized RMSE ed(ω) is
obtained by taking the root of (6), in this way the metric is
the same as presented in [3].

4. METRIC BASED ON FOURIER SERIES
COEFFICIENTS

This section shows how to obtain an error energy metric from
the Fourier series coefficients. At first an energy metric for
one signal is considered, then follows the metric for the dif-
ference between two signals.

4.1 Signal Energy Metric

A continuous-space energy metric is given by the following
integral over the area of interest A

W2(ω) =

∫

A

|P(ω,qqq)|2 dqqq . (7)

Expressing the space coordinate qqq in polar coordinates, i.e.
P(ω,qqq) = P(ω,ρ,φ), the definition (7) can be refined as

W2(ω) =
1

2πρ0

ρ0
∫

0

2π
∫

0

|P(ω,ρ,φ)|2 dρdφ . (8)

This definition allows to make effective use of the circular
harmonics from (2), when the region A is chosen as the in-
terior of a circle. Its radius ρ0 does not have to correspond
to the radius of any circular measurement device. However
the extrapolation of three-dimensional wave fields inside the
circle by means of circular harmonics poses the problems
mentioned in 2.3. Therefore it is wise to consider the energy
only at the fixed radius ρ0, which has to correspond to the
radius of the measurement device. Expressing P(ω,ρ,φ) by
the Fourier coefficients similar to (2)

P(ω,ρ,φ) =

∞
∑

ν=−∞

P̊ν(ω,ρ)e
jνφ , (9)

and integrating the energy at fixed radius ρ0, yields the fol-
lowing energy metric for the wave field P(ω,ρ,φ)

V2(ω) =
1

2π

2π
∫

0

|P(ω,ρ0,φ)|
2 dφ =

∑

ν

|P̊ν(ω,ρ0)|2 . (10)

The above expression can be thought as an energy metric
relative to the radius ρ0 expressed in terms of the Fourier

series angular coefficients P̊ν(ω,ρ0).

4.2 Difference between Two Signals

The difference between two signals P(ω,qqq) and S (ω,qqq) can
be still expressed by the respective Fourier series angular co-
efficients in much the same way as the energy metric for one
signal in Sec. 4.1.

Refining the definition of the distance metric to the circle
with radius ρ0 and considering the normalization term results
in

e2
ρ(ω) =

∞
∑

ν=−∞
|P̊ν(ω,ρ0)− S̊ ν(ω,ρ0)|2

∞
∑

ν=−∞
|P̊ν(ω,ρ0)|2

. (11)

The corresponding normalized RMSE eρ(ω) is obtained by
taking the root of (11). Within the following section the ar-

guments are omitted for brevity and S̊ T
ν and S̊ M

ν stand for the
coefficients of theoretical and measured wave fields, respec-
tively.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

The suitability of the above described evaluation metric is
proven for the same measured data used in [3]. The mea-
surement principle is already described there in Sec. 2 and
further details are available in [8], therefore in the following
only a brief description of the experimental setup is given.
The setup of the experiment consists of a virtual circular mi-
crophone array and a circular loudspeaker array placed in the
low-reverberation chamber of the LMS laboratory. The vir-
tual microphone array is composed of an omnidirectional and
a figure-of-eight microphone mounted on a rotating arm. A
stepper motor positions the arm at 200 equally spaced posi-
tions on a circle with radius of ρ0 = 0.74 m. This rotating rig
is placed at the center of the circular loudspeaker array which
accommodates 48 high-quality emitters on a circle with ra-
dius 1.5 m. Fig. 2 shows the overall setup of the experiment.
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Figure 2: The setup of the experiment.

5.2 Scaling of the Measured Data

When the measured wave field S M is considered, an op-
portune scaling of the measured data is necessary in order
to compensate for the microphone gains and amplifications.
The scaling factor can be simply obtained by imposing that
the energy of the measured coefficients equals the one of the
theoretical coefficients as already discussed in [3]. This leads

to the following scaling of the Fourier coefficients S̊ M
ν

¯̊
S M
ν (ω,ρ0) = S̊ M

ν (ω,ρ0)
VT (ω)

V M(ω)
, (12)

with

VT,M(ω) =

√

√

∞
∑

ν=−∞

|S̊
T,M
ν (ω,ρ0)|2 . (13)

Now the distance metric in (11) can be computed for the-

oretical and also for measured wave fields by inserting S̊ T
ν or

¯̊
S M
ν in place of S̊ ν.

5.3 Comparison of the Results

This section presents the results obtained with the new met-
ric eρ(ω) along with the ones from [3] obtained with the
discrete-space metric ed(ω) from (6). Both metrics are com-
puted to quantify the differences between desired and theo-
retical wave fields, desired and measured wave fields. The
chosen target wave field P for the experiment simulates a
monochromatic omnidirectional point source with different
frequencies f and distances d from the array center. As in [3]
two different rendering techniques are evaluated, namely
Wave Field Synthesis (WFS) [13] and Geometric Rendering
(GR) [14].

Tab. 1 and Tab. 2 show theoretical and experimental re-
sults of the evaluation, respectively. In both cases the metrics
ed(ω) and eρ(ω) show that GR slightly outperforms WFS at
high temporal frequencies. On the other hand the new met-
ric expressed in the angular frequency domain tends to give
better scoring to WFS at low temporal frequencies. This
fact may be further investigated by generalizing the metric
as shown in the next section.

Table 1: Evaluation metrics computed for the difference be-
tween desired and theoretical wave fields. Best performances
are emphasized in bold fonts for the new metric eρ(ω).

WFS GR
f [Hz] d [m] ed(ω) eρ(ω) ed(ω) eρ(ω)

500 3 m 0.235 0.099 0.221 0.174
500 6 m 0.271 0.202 0.271 0.216
500 10 m 0.300 0.247 0.228 0.232

1000 3 m 0.296 0.108 0.241 0.183
1000 6 m 0.312 0.204 0.288 0.222
1000 10 m 0.334 0.247 0.304 0.236

1500 3 m 0.792 0.663 0.498 0.661
1500 6 m 0.689 0.583 0.520 0.499
1500 10 m 0.675 0.568 0.593 0.500

Table 2: Evaluation metrics computed for the difference be-
tween desired and measured wave fields. Best performances
are emphasized in bold fonts for the new metric eρ(ω).

WFS GR
f [Hz] d [m] ed(ω) eρ(ω) ed(ω) eρ(ω)

500 3 m 0.502 0.400 0.503 0.428
500 6 m 0.506 0.428 0.455 0.417
500 10 m 0.446 0.436 0.453 0.431

1000 3 m 0.753 0.548 0.680 0.522
1000 6 m 0.613 0.559 0.603 0.558
1000 10 m 0.593 0.578 0.587 0.571

1500 3 m 1.043 0.919 0.731 0.742
1500 6 m 0.863 0.842 0.700 0.699
1500 10 m 0.898 0.845 0.728 0.694

5.4 Generalization of the Metric

To make the metric more flexible and expressive it is pos-
sible to consider a weighting function Gν(ω) which restricts
the evaluation to a specific region of angular and temporal
frequencies of interest. Then the metric (11) adopts the more
general form

E2
ρ =

∞
∫

0

∞
∑

ν=−∞
Gν(ω)|P̊ν(ω,ρ0)− S̊ ν(ω,ρ0)|2 dω

∞
∫

0

∞
∑

ν=−∞
Gν(ω)|P̊ν(ω,ρ0)|2 dω

. (14)

For example in the above presented experiment the function
Gν(ω) can be thought as three Dirac impulses each centered
at one of the temporal frequencies f = 500,1000,1500 Hz.
Since the corresponding results in Tab. 1 and Tab. 2 reveal
a slightly better performance of GR at high frequencies it
is interesting to consider for the theoretical evaluation two
specific evaluation regions, i.e. Gν(ω) resembles a 2D rect
function centered in two different positions as shown by the
dashed and dotted rectangles in Fig. 3. The dotted region
(550-1050 Hz) comprises a frequency range where the loud-
speaker array from Fig. 2 exhibits little aliasing, while the
dashed region (950-1450 Hz) is chosen to include significant
aliasing effects. Note that with this generalization the error
metric implicitly includes an averaging over frequencies and
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restricts to low order modes. The metric is then modified as
follows

E2
ρ =

ω2
∫

ω1

ν1
∑

−ν1

|P̊ν(ω,ρ0)− S̊ ν(ω,ρ0)|2 dω

ω2
∫

ω1

ν1
∑

−ν1

|P̊ν(ω,ρ0)|2 dω

, (15)

where ω1,2 determine the frequency range of interest and ν1
the highest angular mode considered. The corresponding re-
sults are compiled in Tab. 3, they confirm the advantages
which GR offers at high temporal frequencies whereas at low
frequencies WFS still guaranties a more accurate reproduc-
tion of angular modes.
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Figure 3: The figure represents the theoretical normalized
RMSE in dB for each frequency ω = 2π f and mode ν, the
dashed rectangles show the regions selected for the evalua-
tion through the weighting function Gν(ω).

Table 3: Evaluation metric computed for the difference be-
tween desired and theoretical wave fields within specific re-
gions of angular and temporal frequencies. Best results are
emphasized in bold fonts.

WFS GR
f [Hz] d [m] Eρ Eρ

550-1050 3 m 0.094 0.173
550-1050 6 m 0.202 0.215
550-1050 10 m 0.224 0.230

950-1450 3 m 0.364 0.318
950-1450 6 m 0.395 0.363
950-1450 10 m 0.424 0.385

6. CONCLUSIONS

In this paper an alternate evaluation metric is presented
which enables to compare the accuracy of different wave
field rendering techniques. It relies on 2D measurements on
a circle and the corresponding Fourier series angular coeffi-
cients, thus it reveals the capability of the rendering system

to reproduce the angular modes on a circle which embraces
the listening area. Such a metric is simple and does not in-
volve the wave field extrapolation inside the evaluation area.
It is compared with the discrete space metric already used by
the authors in [3], moreover it is extended by an additional
weighting function which allows to focus on certain regions
of interest in the frequency-mode-numberplane. Simulations
and experimental results show that the new metric allows
a flexible assessment of the characteristics of the rendering
techniques.
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