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ABSTRACT

We consider the problem of modeling long-memory sig-
nals using piecewise fractional autoregressive integrated
moving average processes. The signals considered here
can be segmented into stationary regimes separated by
occasional structural break points. The number as well
as the locations of the break points and the parameters
of each regime are assumed to be unknown. An efficient
estimation method which can manage large amounts of
data is proposed. This method uses information criteria
to select the number of structural breaks. Its effective-
ness is illustrated by Monte Carlo simulations.

1. INTRODUCTION

Stationarity plays an important role in modeling time
series. However, many signals in the real life are non-
stationary. Models with structural changes have been
of interest to many researchers, especially in the case of
detecting and estimating a single break, see for instance
[1]. Studies related to multiple structural changes have
received relatively less attention, see [10] for a review. A
natural method for fitting a piecewise parametric model
with multiple structural changes to data consists in min-
imizing some criterion based on the likelihood function
or on the model fitting residuals. The arguments in
such a criterion are the number and the locations of
structural break points (BPs) as well as the model coef-
ficients of each stationary regime. Recent works include
[2] and [11] where the authors have addressed the mul-
tiple structural changes problem in a linear regression
model using least-squares criterion, and establish the
consistency and the rates of convergence of the estimates
of the BPs and the regression coefficients. However, the
criterion based approach may encounter some practical
difficulties when the signal has a large amount of data
so that the search space for the optimization of the cri-
terion is huge. This happens for instance with Internet
traffic data. Therefore, other methodologies are needed
in this case.

Piecewise long-memory (LM) models have been
proved to be attractive for instance in telecommunica-
tions, see [17] and [16], and in economics and hydrology,
see [12]. However, the literature addressing the issue
of structural changes in LM models is relatively sparse,
partly because these two phenomena are easy to confuse,
see [4] and [7]. Due to this difficulty, studies address-
ing piecewise LM processes consider partial structural
change models where only some coefficients are allowed
to vary. Then, the BP number is often assumed to be
known which simplifies the model fitting method. For
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example, [8] has derived the consistency and the rate
of convergence of the least-squares BP estimate for a
mean change LM process whose BP number is known;
[5] and [12] have considered a piecewise LM process with
known and constant autoregressive and moving average
orders; [6] has estimated the BP locations for a piecewise
fractionally integrated process with a known number of
breaks.

From a practical point of view, partial structural
changes models may be unrealistic. Therefore, a model
in which all parameters are allowed to change as well as a
corresponding estimation procedure seem to be needed.
In [16], a procedure has been proposed for fitting a piece-
wise fractional autoregressive integrated moving average
(FARIMA) process to a non-stationary LM signal. The
main idea of this procedure is to estimate the BPs accu-
rately by detecting the changes between the parameter
estimates of each regimes. This method is simple and
effective, and has the advantage to deal with many thou-
sands of data with occasional BPs, like Internet traffic
data. However, this methods has two main limitations.
First, it is designed for non-stationary models with at
least one BP, and therefore it is not able to discrimi-
nate between a stationary and a non-stationary LM sig-
nal. Hence, preliminary tests are needed to reject the
null hypothesis of stationarity before using this proce-
dure. The second and more serious limitation is that the
number of BPs needs to be known. Although an ad-hoc
solution to estimate the BP number has been proposed
in [16], this solution works only under some restrictions
on the BP locations. In this paper, we present a new
method which does not suffer from the two limitations
above. Our method can be applied to long time se-
ries with many thousands of data and BPs satisfying
assumptions (Al) and (A2) in Section 3, and we con-
centrate on simulations results.

The rest of this paper is organized as follows. The
piecewise LM model is described in Section 2. In Sec-
tion 3, our fitting procedure is presented with different
BP number selection criteria. Numerical simulation re-
sults are discussed in Section 4 and Section 5 concludes
the paper.

2. MODEL DESCRIPTION

We suppose that the non-stationary process {Y;}, t =
1,...,n, can be segmented into m-+1 blocks of fractional
FARIMA processes. For j = 1,...,m, denote the BP
between the jth and (j 4 1)th FARIMA processes as 7,
and set o =1and 7,41 =n+1. Forj=1,... . m+1,
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the jth block of {Y;} is modeled by

Yi=Xep1-1,_1 s Ti—1 <t <71y, (1)
where {X; ;}, t € Z, is the FARIMA(p;,d;, g;) process
defined by the difference equation

®;(B)X; = 6;(B)(1—B) %e, (2)

B is the backward operator BX; = X;_1, {e ;}, t € Z,
j=1,...,m+ 1, is a sequence of iid zero-mean ran-
dom variables with finite variance, dj € (0,1/2), and
the polynomials ®,(z ) =1—-¢j12— - —¢jp,2" and
Oj(z) =1+ 012+ - + 04,29 with real coefficients
have no common zeros and neither @, ( ) nor ©;(z) has
zeros in the closed unit disk {z € C : |z| < 1}. The
process (1 — B)~%¢, ; is defined by

> e 0 r(dj)et—rj, (3)
where @o(d;) =1 and (d;) = Hle % for k > 1.
Since dj < 1/2, >"32, ¢r(dj)* < oo and the series in (3)
converges in the mean square sense. Since the sequence
{et,;}, t € Z, is zero-mean and iid, the series in (3)
converges also almost surely.

Let p > max(p;), ¢ > max(gj), a; =
(dj; ¢j,17 ey ¢j,p; (9]‘,1, ey 9j,q) where ¢j,k = 0 for k >
p; and 0, = 0 for kK > g;. Vector a; contains the
parameters of the jth model defined in [7;_1,7;). The
piecewise FARIMA process {Y;} is characterized by the
BPs 7; and the parameters o for j =1,...,m 4+ 1.
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3. ESTIMATION PROCEDURE

The problem of fitting model (1)—(2) to data consists in
finding (m,m1,...,Tm, 01, ..., @m+1). Following [16], we
divide the original time series {Y;} into a set of elemen-
tary sub-series of length F and use the data in a same
sub-series to get a local parameter estimation. Then the
differences between the parameter estimates in the ele-
mentary intervals can be used to search the BPs which
are dispersed into a few intervals.

In the following, K is the integer part of n/FE, i.e.
K = |n/E] and we introduce the elementary intervals
I, = (k=1E,kE] for k = 1,...,K — 1 and Ix =
((K — 1)E,n]. We make the following assumptions:

(A1) There is no BP neither in I; nor in Ik.

(A2) At least (2 4+ 0)F data separate two consecutive
BPs for some § > 0.

Our new estimation procedure consists in the following
steps.

Step 1 : Local estimation. For each interval I,
k = 1,...,K, the model’s parameters &; are cho-
sen by quasi Gaussian maximum-likelihood estimation
(QMLE), see e.g. [3], and a pair (P, Gk ) is selected with
the Bayes information criterion (BIC) as suggested by
[19]. To catch the parameters changes with a compara-
tively small E, we choose QMLE since these estimates
perform better than the two others popular estimates,
namely the wavelet estimates, see e.g. [17], and the
Whittle estimates, see e.g. [18], when the data length is
not long.

Step 2 : Choose 0 < n < min{0.5,6} and for m =
1,..., {MJ + 1, do Steps 2a,b,c.

@2+mE

Step 2a : Selection of the intervals with a BP. If
model (1)—(2) is suitable for the data, one expects that
@y is close to the true values of the parameters when
there is no BP in the interval I;. Now, if there is a
BP in I;; and no BP in I;_; and Ix41, &y should be
significantly different from both a;_; and ag41. Then,
let kg =0, kyp+1 = K+ 1, and

. m—+1 kj—1
(k1. k) =argming,, o 4307 DA ko141

(¥1(8x — @) + o — 55 + 13k — @iD)), (@)

where the minimum is taken over all possible m-tuples
(k1,...,km) satisfying 1 < k1 < < km < K
and assumption (A2) where § is replaced by 7, for

any vector uw with components w;’s, |u| = >, |u,
_ kj—1
a; = ﬁ Do k11 G, Dy (resp. @) is the order

which is the most frequently selected among the orders
D (resp. Gx) for k = k;_1 +1,...,k; — 1. In the case
where p; (resp. g;) is not unique, the lowest order is cho-
sen. In (4), we take 91 (z) = In(1+2) and 9o (x) = z/2.

When a BP is located close to the upper bound of
an elementary interval, minimizing (4) might lead to se-
lect this interval or the next one. A similar problem
appears when a BP is close to the lower bound of an
elementary interval. For this reason, we define the in-
tervals containing a BP as being (J sy ) where
Jo = (E,(2+n)E], Jp = ((k—1— )E (k + n)E] for
k= 3,...7K—2 and Jg_1 = (K—2—n)E, (K —1)E].
The role of n > 0 is to avoid the possible erroneous se-
lection when a BP is close to the limits of an elementary
interval.

Step 2b : FEstimation of the BPs. Suppose that
all the intervals Jk are selected properly, i.e., 7; € J;_

Therefore, for any “fixed 7, there is no BP in the ° pre—
vious” block between J; ~and Jj , viz. ((kj_1 +

nE,(k; —1 — n)E] where we set ko + 7 = 0, and
we define &, as the QMLE of a; based on the data
in this block where the orders (pp,qp) are selected by
BIC. In the same way, let &, be the QMLE of o4
based on the data in the “next” block between ka and
Jijprr ViZ. ((kj + n)E, (kj+1 — 1 — n)E] where we set
(kmt1 — 1 —n)E = n, and (pn,qn) be the orders se-
lected by BIC. We treat &, and &, as two benchmarks.
These estimates are more precise than any local esti-
mate calculated in Step 2 since they involve more data.
Suppose that [ € J,;j is the BP ;. Then we can calcu-
late the QMLE &;, of a; using the orders (pj,q,) and
the QMLE &, of a1 using the order (p,,qn) based
respectively on ((kj—1 +n)E,l] and (I, (kj41 —1—n)E].
These estimates should be close to benchmarks &, and
G, respectively. Hence, our choice of the BP estimate
7; is based on the following criterion

#; = argmin (w1(|ozlp — éy|) + 1 (|dy, — dnl)). (5)

lEchj
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Step 2c : FEstimation of the parameters of each
stationary block. Once (71,...,%,) are obtained, the
parameters «; of the stationary sequence X, ; for j =
1,...,m+ 1, can be estimated by QMLE and BIC, on
the basis on the data in (7;_1,7;], where 7o = 1 and
Tm+1 = n. We denote by &; and (p;,q;) the corre-
sponding parameters and orders.

Step 3 : m = 0. We fit a FARIMA model to the
series {Y;}, t = 1,...,n, estimating the model’s param-
eters by QMLE and selecting the ARMA orders by BIC.

Step 4 : Selection of the BP number. For m =

0,..., {%J + 1, we compute the sum of squared

residuals of the fitted model (1)-(2) with m BPs,
Sy (1, ..., Tm), and the Gaussian log,-likelihood log, £;
of the jth segment for j =1,...,m+ 1. For m = 0, we
take the model fitted in Step 3 and for m > 0, we em-
ploy the models fitted in Step 2c. These quantities are
useful for calculating the following BP number selec-
tion criteria. The first three criteria are based on the
Schwarz criterion [14] and differ in the severity of their
penalty for over-specification. The last criterion is based
on the minimum description length (MDL) principle in-
troduced by [13]. Following [20], the selected number of
BPs minimizes

Cl(m)zln[Sn(i'h...,f'm)/n]—|—p*1nT", (6)
where p* = Z;’:{l(pi +q;) +2m +1 is the total number
of parameters. A criterion proposed by [21] takes the
form

Cg(m)zln[Sn(ﬁ,...,f'm)/n}—l—m%, (7)
where C, satisfies some constraints, and [9] introduced
criterion

2+v0

77A—m)/(n _p*)] +p*%a

(8)
where ¢y > 0 and vy > 0. Finally, following [15] amounts
to minimize

C3(m) = In[Su(F1, ...

Ca(m) = L(m) + S L(#y) + L(py) + L)+

D+ G; +2 .
% log, nj —logy £}, (9)

where 7i; = 7; — 7;_1 and for any nonnegative integer x,

L(z) = log, ¢+ logy  +logy logy z + - -+ if & > 0,
|0 if x =0.
Here c is a constant approximately equal to 2.865 and
the sum involves only the nonnegative terms, whose
number is clearly finite. We compare these four criteria
in Section 4.

Remark 1. Predefining a suitable length E for the el-
ementary sub-series is not always an easy task: on the
one hand, due to LRD, a reasonable number of observa-
tions are needed to obtain precise parameter estimates,
and then F can’t be too short; on the other, the prob-
ability of meeting a BP increases as E grows. Hence
some restriction should be put on F, and F is chosen
by empirical experience.

Remark 2. To reduce the complexity, &;, and ¢, in
Step 2b are calculated using the data in (I — E,[) and
(1,1 + E), respectively, and this gives good results in
practice as shown in Section 4.

4. MONTE CARLO SIMULATIONS

Our simulations are based on 1000 replications of two
kind of cases where the procedure in [16] does not work.
First we consider the case of a stationary process and
then we study a case where the ad-hoc solution proposed
in [16] to estimate the BP number fails. In our simu-
lations, we take E = 2000, n = 0.1, and the maximum
value of the ARMA orders considered in BIC is 7. Since
there is no general guideline for deciding the values of
Ch, co and 7y in the case of piecewise LM series, we take
Cpn, = c1n®%in (7), 70 = 2 in (8) and we choose ¢y and ¢;
to get the same penalty in g6), (7) and (8) for n = 2000.
This gives ¢g = (In2000)~7, but since m, p;, q; are un-
known, we take arbitrarily 21n 2000 = ¢; 2000°. These
values work properly in the following experiments.

4.1 Stationary processes

Here we consider a stationary FARIMA(1, d, 1) model of
length n = 40000, where {¢; ;}, t € Z, j=1,...,m+1,
is a Gaussian sequence, ¢ = 0.5, § = —0.7 and d varies
in {0.15,0.3,0.45}.

Table 1 below displays the number of times the dif-
ferent criteria in Step 4 select m = 0 in the 1000 replica-
tions. For all d values and all criteria except C1, m = 0 is
properly selected in each experiment. Furthermore, the
percentage error of C; does not exceed 1%. These ex-
cellent performances can be explained as follows. When
the series is stationary, the estimated parameters of each
stationary block in Step 2¢ are almost the same and co-
incide with the parameters obtained in Step 3. There-

fore, S, (71,...,7m)/n and Z;gl log, £; do not vary
too much with m. Hence, the four selection criteria in

Step 4 are minimum for the true number of BPs m = 0.

Criterion d
0.15 7 03 [ 0.45
Cy 991 987 | 989
Cy 1000 | 1000 | 1000
Cs 1000 | 1000 | 1000
Cy 1000 | 1000 | 1000

Table 1: Selection of m = 0 for a stationary process.

4.2 Multiple BPs processes

Here we consider two piecewise FARIMA models M1
and M2 of length n = 40000 with 4 BPs, where {¢;;},
teZ,j=1,...,m+1, is a Gaussian sequence and the
parameters of each block are given in Table 2. The four
BPs are located at Ay = 6100, Ay = 11000, A3 = 24200
and Ay = 29900 for both models. From now on, we use
the standardized break fraction A; = 7;/n, and then
A1 = 0.1525, Ao = 0.2750, A3 = 0.6050 and Ay = 0.7475.
In model M1, each block is a FARIMA(1,d, 1) process,
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while the orders (pj, ;) of each block are different in
model M2. Since (4) and (5) measure the differences
between the parameter estimates of the different regimes
X, in (2), we test the performance of our method when
the parameters of the blocks are very different and when
they are close in a piecewise model. The parameters of
the first three regimes in model M1 can be considered
as very different, while the parameters of the last three
regimes are close.

M1 M2
ar [ (0.15; 0.8; -0.5) (0.45; 0; 0)
as | (0.4;0.8; 0.6) (0.15; -0.8; 0)
as | (0.2, -0.7; 0.4) | (0.2; 0.7; (-0.7,-0.4))
as [ (0.35;-0.3; 0.5) (0.10; 0; 0.8)
as | (0.2; -0.4; 0.8) (0.35; 0.6; -0.7)

Table 2: Model parameter values.

In Table 3, we present the BP number selection in
Step 4 for the two models. For M1, we see that Cy
works better than the other criteria and select the true
BP number in more than 95% of the cases. Criteria C;
and C4 give the right answer in 82% and 90% of the
cases, respectively, while C; performs relatively poorly
and chooses m = 4 only in half of the cases. No criteria
underestimate the BP number. For M2, criteria C,, Cs
and Cy still work better than C;. They select smaller
BP numbers than C; does, and they find the true num-
ber in at least 70% of the cases. Observe that C; and
Cs underestimate the BP number in some experiments,
which is not the case with C3 and C4. Co and C4 seem
to outperform the other two criteria for both models M1
and M2. Observe that C; and C4 given respectively by
(6) and (9), are free of any tuning parameter which is
not the case of Co and C3 given by (7) and (8), respec-
tively. As a result, taking into consideration simplicity
and performance stability, C4 is more attractive than
Cs.

m Cl CQ Cg C4
<4 0 0 0 0

M1 | 4 | 544 ] 981 | 828 | 907
>4 | 456 | 81 | 172 | 93
<4 | 8 | 57 0 0

M2 | 4 |607 | 786 | 731 | 802
>4 | 308 | 157 | 269 | 198

Table 3: BP number selection in Step 4.

Table 4 shows the sample mean [i(\;), the standard

error 6(A;) and the mean-squared error (MSE) of the
estimation of the BPs in Step 2b when m = 4 for M1
and M2. For both models, the estimated BPs are close
to the true BPs, and standard errors as well as MSEs are
quite small, especially for model M1. We observe that
the estimations of the third and the fourth BP in M1 are
not as good as the estimations of the first two BPs since
the MSEs are larger. The reason is that the selection
of the intervals with a BP in Step 2a encounters more

difficulties when the parameters of the regimes are close.

Aj 0.1525 0.2750 0.6050 0.7475

a(A;) | 0.1521 0.2751 0.6073 0.7493

M1 | 6(A\;) | 0.0019 0.0008 0.0065 0.0055
MSE | 3.82e-6 | 6.077e-7 | 4.835e-5 | 3.353e-5
a(A;) | 0.1553 0.2792 0.6059 0.7487

M2 | 6(\;) | 0.0222 0.0409 0.0165 0.0161
MSE | 5.103e-4 | 1.726e-3 | 2.736e-4 | 2.619e-4

Table 4: Estimated BPs in Step 2b.

Table 5 gives the number of right model order selec-
tion in Step 2c for each stationary regime identified in
Step 2b, in the cases where m = 4 is selected. We see
that the true orders are well identified for both models.
Slightly better results are obtained for M1 since the es-
timation of the BP locations is more precise in the case
of M1.

1 2 3 4 5
M1 | 979 | 951 | 973 | 923 | 912
M2 | 950 | 928 | 960 | 907 | 906

Table 5: Right model order selection for each regime in
Step 2c.

Table 6 displays the model coefficient estimation re-
sults for each regime when m = 4 and the right model
orders are selected for all regimes. We see that since the
BP locations and the model orders are well recognized,
the estimates of the coefficients are quite precise.

5. CONCLUSION

In this article, we have proposed a new method to fit
piecewise FARIMA models to both stationary and non-
stationary LM data. The method can deal with many
thousands of data and consists in a four-steps procedure
designed to estimate both the BPs and the parameters.
Four information criteria are used in the last step of this
procedure to determine the BP number. Monte Carlo
simulations have demonstrated the good performances
of this fitting method.
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