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ABSTRACT

We present a new method for data-adaptive compression of
dense vector fields in dynamic medical volume data. Conven-
tional block-based motion compensation used for temporal
prediction in video compression cannot conveniently cope
with deformable motion typically found in medical image
sequences encoded over time. Based on an approximation
of physiologic tissue motion between two succeeding slices
in time direction computed by optical flow methods, we find
the most significant motion vectors with respect to their pre-
diction capability for a second 2-D slice out of the first one.
By coding the components of these vectors, we are able to
reconstruct a high quality dense motion vector field at the
decoder using only minimal side-information. We show that
our approach can achieve a smoother prediction than block-
based motion compensation for such data, reducing storage
demands in spatially predictive lossless compression. We also
show that such a predictive approach can yield better com-
pression ratios than JPEG 2000 intra coding.

1. INTRODUCTION

Currently, in clinical environments diagnostic medical image
data is usually stored in an uncompressed or lossless manner
due to physicians demands and legal restrictions. A well es-
tablished container format for such medical data is defined
in the DICOM standard [3]. Other than uncompressed RAW
images, a DICOM dataset can also contain images in loss-
less compression formats like TIFF or JPEG 2000. However,
such 2-D image compression methods were not intended to
make use of temporal correlations in dynamic datasets like
3-D +t reconstructions of the beating heart in cardiac com-
puted tomography (CT, see Fig. 2) or magnetic resonance
imaging. The time direction of a 3-D + t volume data set can
also be considered as fourth dimension (Fig. 1). Thus, var-
ious other compression methods have been analyzed in the
literature in order to exploit spatial and temporal redundan-
cies, e.g., [6, 7]. Compared with redundancy reduction in
depth (z-) direction like in JPEG 2000 3-D, the redundancy
reduction over time allows to watch the motion at one ax-
ial slice without loading all other volume slices, even if for
random access typically the whole uncompressed data set is
stored in working memory anyway. A common approach is to
use techniques from video coding, which involve block-based
motion estimation / compensation (Block Matching, BM) for
the precise prediction of consecutive slices in time direction.
Yet, conventional BM assumes mostly translational motion
like in real life movies, which is not always suitable for med-
ical image and volume data. In dynamic medical data we
observe mostly deformations of contiguous tissue caused by
muscle contractions like heart beats, breathing, or swallow-
ing. From a physiological point of view, the represented tis-
sue is contiguous, so it is reasonable to assume similar motion
in local neighborhoods. In order to account for the smooth-
ness of this motion, we estimate a distinct motion vector for
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each voxel of a 2-D slice with respect to the previous slice in
time direction (see Fig. 1), i.e., we obtain a dense motion
vector field. To this end, well-known techniques from optical
flow computations can be applied [2]. In structured regions,
this leads to better approximations of tissue movements and
thus better predictions. Furthermore, such a smooth mo-
tion approach has other advantages, e. g., it is not restricted
to block based compression schemes, but also can be better
combined with spatial prediction like in JPEG-LS or wavelet
compression in spatial and temporal directions. Since in ho-
mogeneous regions the impact of inaccurate motion vectors
on the residual error after motion compensation is rather
low, we do not have to store these vectors for a good predic-
tion. It is sufficient to transmit only reliable motion vectors,
while interpolating the remaining ones at the decoder.

Z
(3. dim.
X
(1. dim.)
(2. dim.) Nt
t 2-D slices in
(4. dim.) t-direction (over time)
Fig. 1: Four dimensions (x, y, z, t) of a 4-D data set.

Checkerboards show the slice sequence over time between
which the motion is estimated.

Besides other motion concepts like mesh-based coding
[8], there have been also attempts to encode a dense motion
vector field for consumer video, most notably by Han et. al.
[4] and in some previous work referenced by him. The draw-
back of dense motion vector field approaches for ordinary
video is that they cannot naturally deal with occlusion, so
the advantages compared to an elaborate BM scheme like in
H.264/AVC [5] are rather small. If rotational, deformable,
or zooming motion ever occurs in such video, this motion is
mostly slow with respect to the frame rate, so the residual
error after BM is rather moderate. Another advantage of
BM is that it may predict image distortions like correlated
noise or reconstruction artifacts, e.g., low frequency inten-
sity gradients up to a certain level, in that it searches only
for smallest differences between blocks. This is why dense
motion vector approaches usually perform only well in lossy
compression schemes with high compression ratios.

2. MOTION VECTOR AND CONFIDENCE
ESTIMATION

For high efficient coding of CT data it is crucial to deter-
mine an accurate prediction for each voxel intensity in order
to minimize the variance and thus the entropy of the residual
error. In our approach, this goal is accomplished using an
individual prediction for each voxel, which is obtained from
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Fig. 2: Slices over time from a dynamic cardiac CT dataset. The two center ones are used in the following illustrations.

the axial 2-D slice at the same z-position in the previous time
step. For the estimation of a dense motion vector field, we
employ a correlation (or matching) based hierarchical optical
flow method similar to the one in [1], but somewhat simpli-
fied for our purpose. Compared to differential optical flow
methods, it minimizes the residual error between the frames
and can inherently handle large displacements, so it is much
better suited for this application.

The algorithm seeks to minimize a weighted linear com-
bination of the sum of squared intensity differences (SSD) of
a neighborhood around a moving voxel and the disparity of
adjacent motion vectors. First, both previous and current
frame are repeatedly scaled down in image size by a factor
of two until we reach a size where the magnitude of move-
ments amounts only one voxel. After motion estimation, the
vector field is hierarchically scaled up by a factor of two in
resolution as well as in vector length by using bilinear inter-
polation until the original image size of the images has been
reached. In each stage the estimation gets refined by an it-
erative algorithm that compares a 5 x 5 neighborhood N of
each position x in the current frame 4, with candidate posi-
tions v in the previous frame iy.1. The candidate positions
are within a search range of one voxel (eight-neighborhood)
around the position where the previous vector estimation
Vv¢—1 is pointing to:

argmin
VEN3zx3(vi—1(x))

Vi (X) =

D e Ng 5 () (tu(T) = dua(r + v))?

1
FAY = § Diengestor i Vi-1(D)

The first term minimizes intensity differences, whereas the
second regularizing term minimizes the differences between
the vector and its eight neighbors. The weighting parameter
A has to be chosen heuristically, but turned out to be not very
critical as long as the SSD is weighted high enough. Around
5 to 10 iterations in each stage are usually enough to gain
a good approximation of the motion. Our (single thread) C
implementation is able to estimate a 512 x 512 voxel vector
field with 10 iterations per stage in less than two seconds on
a current 2.8 GHz CPU. A vector field estimation computed
using this algorithm is shown in Fig. 3 (left).

After the vector field has been estimated, a confidence
measure has to be determined for each of the vectors. Again
we applied a slightly modified version compared to [1]. As
if we would perform another iteration of motion refinement
in the largest resolution stage, once again we determine the
SSD values in a 3 x 3 search range around the estimated
vectors. Out of the curvature of the resulting 3 x 3 SSD
matrix S we are now able to compute two confidence values
¢z in x- and ¢y in y-direction. For this purpose we calculate

3

Fig. 3: Left: Current frame (to be predicted) with dense

motion vector field, down sampled for illustration. Right:
Confidence values for z-components of motion vectors, bright
regions show high reliability.

the second derivative of the matrix in both directions:

1 1
e =w'S8d, ¢, =d"Sw, withd= [—2} , W= M
1 1
For example, if a pixel is located in a homogeneous region, all
entries of S are similar, so the confidences of both estimated
vector components will be low. If it is located at a vertical
intensity border, the SSD increases when changing the search
position in z-direction, so S has higher values in its left and
right columns and thus c, is large.

3. SPARSE VECTOR FIELD
REPRESENTATION AND RECONSTRUCTION

In our algorithm we store motion vector components only at
important positions (feature points). Due to the contiguous
nature of tissue, other vectors can be extrapolated at the
motion decoder without introducing a huge residual error.
A block diagram of our vector field encoding algorithm is
depicted in Fig. 4. After an initial feature point detection
(step 1), the feature culling reduces this initial set of feature
points with respect to the introduced error (step 2). Using
a vector field reconstruction algorithm, an approximation of
the original vector field can be restored out of the remaining
features (step 3). In the remainder of this section these three
steps will be described in more detail.

In step one, initial feature positions, at which either the
x or the y component of a motion vector will be stored, are
selected independently, applying a local maxima detection

3The dynamic cardiac CT data was kindly provided by Siemens
Healthcare.
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Fig. 4: Block diagram of the encoder (numbers indicate the sections with descriptions for the blocks).

algorithm to the confidence function (Fig. 3, right). In this
context we define a feature as a triple f = (m,n,c) with
(m,n) being the position of an important motion vector and
¢ being the important component of this vector. A voxel po-
sition is defined to be a local maximum, if it has the highest
confidence value in a local neighborhood. The size of this
neighborhood specifies the minimum distance of local max-
ima and thus the total number of initially selected feature
points. Its choice represents a trade-off between complexity
of the subsequent feature culling and potential loss of im-
portant vector information. Our experiments revealed, that
neighborhoods in between 3 x 3 and 5 x 5 are much suited.
Furthermore, in order to reduce the detection of maxima in
noisy regions, only maxima with magnitudes above a cer-
tain threshold are accepted as feature point candidates. The
particular value depends on the intensity range and on the
present image noise. A choice of about 5% — 10% of the max-
imum confidence value yields good results for our dataset.

The feature culling in step two reduces the number of fea-
tures. To do so, it checks for different sets of feature points,
how the mean square error (MSE) of the prediction using
the reconstructed vector field would change, if these feature
points would be dropped (“culled”). The set of feature points
introducing the lowest penalty is culled. This step incorpo-
rates a vector field reconstruction as described later, a mo-
tion compensation and a MSE calculation for each set. Note
that an optimal culling would require to check every possible
combination of feature points for a given number of desired
features n, that is (]:L’) checks, where N is the number of
preselected features. In order to decrease the complexity, we
suggest a sub-optimal greedy culling strategy. This strategy
checks independently for each feature point how the MSE
changes with its removal. The removal, which minimizes the
MSE is finally realized. In this manner, we successively re-
duce the number of feature points, until reaching a desired
number or a maximum MSE. With this, the number of checks
reduces to 0.5 - N - (N + 1), which results in a complexity of
O(N3. Pizels) (including reconstructions), so at the moment
the run time of this method is significantly higher than BM.

After feature culling, we got the final feature positions.
For each feature its position and the important component ¢
of the motion vector at this position has to be transmitted,
while the other vector component gets extrapolated from
more reliable positions. A set of 1170 features can be seen
in Fig. 5, left. In general, the order in which the features are
transmitted, is of no interest. Therefore, a simple run-level
encoding in raster-scan order can be applied to the features,

i.e., for each feature the raster-scan distance to the previ-
ous one is stored instead of its absolute position. Both the
distances and the vector components can then be encoded
using an arithmetic coder for example. Notice, that meth-
ods like differential coding of proximate features do not es-
sentially reduce data rate. During feature culling, closely
seated features with similar components have been reduced
to a minimum already, so there is not much inter-feature
redundancy left. Furthermore, when storing voxel accurate
positions as we do, the least significant bits contain the bulk
of information and so short distances not necessarily account
for few position data. According to our experiments, even
the shortest “travelling-salesman” route through the feature
positions, which minimizes the distances between them, has
no advantage.

In order to obtain a good approximation to the original
vector field out of the available sparse motion information,
there are some prerequisites on the reconstruction process in
step three:

e At feature positions the available vector component must
exactly be reproduced due to its high confidence.

e Vectors in the vicinity of feature positions should have
similar vector components according to the connected tis-
sue, while the influence of more distant motion informa-
tion should be very low.

e Far away from feature positions the vectors should be
short, as the nature of tissue attenuates local motion, so
there is no global motion.

e Long motion vectors at feature positions should affect
larger regions than short vectors, also by reason of con-
nected tissue.

Still treating both vector components independently, we use
a weighted nonlinear superposition of 2-D Gaussian func-
tions for the extrapolation of the feature vector compo-
nents ¢, to get the reconstructed motion vector field g =

(92, m). g, (. m)):
exp (7$>7

go(m,n) = <Z dk‘*)

di = (m —mp)® + (n —nps)?

Ka:
Ck,x

. i
k=1 Kk

Gaussian functions are suited for this problem, as they take
high values near their maximum but have a fast and smooth
decay. For each of the K, features a Gaussian function is
added with its maximum at the feature position (myg o, g,z ),
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the width proportional and the height equal to the vector
component ¢ . In order to preserve the property of ex-
act interpolation at the center of each Gaussian and further
reduce the impact on distant vectors if there are closer fea-
tures, a d~* weighting function is used for each Gaussian,
where d is the distance to its center (the feature position).
Finally, the vector components are normalized by the sum
of all weighting functions. The second components of the
vector field g, are computed the same way. Note that the
parameter o should depend on the rigidity of the tissue, even
if it can be chosen in a wide range (up to infinity) without
much impact on the reconstruction result.

For a lossless image data compression, the reconstructed
vector field can be used to obtain a prediction of the current
slice: Each voxel gets predicted using the corresponding in-
tensity value from the previous slice according to the motion
vectors. After subtraction from the real data, only this resid-
ual error has to be transmitted. If only full-pel accuracy is
used for the motion compensation, some difficultly codeable
high-frequency noise might be introduced to the prediction
and consequently to the residual error, especially in regions
of high contrast. However, this can be solved with a simple
oversampling of the vector field by a factor of two. In Fig.
5 on the right a vector field reconstruction with its corre-
sponding compensated prediction can be seen.

Fig. 5: Left: Previous frame with white arrows (features)
pointing to best fitting positions. Only these feature vector
components are transmitted. Right: Predicted frame using
the dense vector field reconstruction out of the features on
the left (white arrows, down sampled for illustration).

4. RESULTS

For our experiments we used a 3-D + t scan of a beating heart
[6]. Our tests were conducted using the ten axial slices over
time of one heart beat at a fixed position in z-direction (Fig.
2). They represent the change of a heart muscle in time,
even if during the reconstruction several heart beats have
been compensated for respiratory motion and then merged
to one single beat. The individual slices have a resolution of
512x 512 voxels and an intensity range of eight bits per voxel.
Dynamic CT datasets in general contain deformable motion
as well as a high amount of image noise due to limited X-ray
exposure. Another characteristic is the low temporal sam-
pling (frame) rate. With the maxima detection algorithm,
5540 features have initially been computed between the two
frames in the middle of Fig. 2 (using 12-point neighborhoods
and 2% of the maximum confidence as a minimum). At
first, the feature culling reduces the residual error, as some
of these features actually degrade the prediction capability
of the reconstructed vector field but after several culls, the
error increases. In terms of lossless compression, the culling
should continue, until the combined motion and residual er-
ror information reaches its minimum. However, this residual
error information depends on the applied encoding method.
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Fig. 6: Residual error information over vector information
per pixel with BM (dashed line) and feature based approach
(dash-dot line). The solid line shows the combined vector
and residual information for the feature based approach.
For reference: Information with prediction using zero mo-
tion vectors (wide dotted line) and JPEG 2000 intra coding
(upper dotted line). Curves are averaged over ten slices.

As an objective measure of information, the entropy of
an element is used, where elements are residual values, vector
components or feature distances. With an arithmetic coder
we could confirm our computed entropies.

One major advantage of our approach over BM consists
in the smooth motion vector field and in consequence the
absence of blocking artifacts. Therefore the subsequent ex-
ploitation of spatial redundancies is not restricted to pixels
inside a block like in block-based discrete cosine transform
schemes. Applicable methods for encoding the residual er-
ror encompass wavelet encoding like in JPEG 2000 or pixel-
based prediction from a causal context like in the LOCO-I
algorithm. In order to show that it is not convenient to
combine BM with such approaches, we tested a simple addi-
tional voxel-based spatial prediction for residual error cod-
ing, where the context consists of the left and upper neigh-
bors. Our BM implementation uses square blocks to searches
for the best matching position in the previous frame within
a search range of 24 voxels in terms of the SSD. It uses all
possible integer block sizes in order to scale motion informa-
tion.

Fig. 6 shows how the residual entropy after temporal
and spatial prediction changes with growing vector informa-
tion for both BM (dashed line) and our scheme (dash-dot
line). The solid line shows combined motion and residual
information with our scheme. Because of blocking artifacts,
BM is worse than directly using the previous frame as pre-
dictor (thick dotted line), whereas in our method the resid-
ual information decreases when adding motion information.
The minimum overall information (including motion) for this
residual error coding method in our approach is reached at
around 1-2 kilobyte of motion information per slice, depend-
ing on the motion (see solid line). Only for high amounts of
motion information (small block sizes), BM can achieve bet-
ter predictions as to its prediction of correlated noise struc-
tures but the overall information is remarkably larger then.
As a reference, also the data rate of JPEG 2000 is shown
(dotted line) when coding the slices individually. Since it
cannot use information in previous time slices, its compres-
sion ratio is indeed worse than with the predictive schemes.

For the example in Fig. 3 the minimum was reached with
the 1170 motion vector components in Fig. 5 (left). The
according vector field reconstruction (o = 10 voxels) as well
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as the slice prediction are shown on the right. The residual
error image of both methods (without spatial prediction)
with equal motion information of 1128 bytes (in BM: block
size 16 x 16) can bee seen in Fig. 7. We can notice here,
that our approach does not produce blocking artifacts and
leads to a lower residual error in regions with high intensity
variations and non-rigid motion (upper left and lower right).
On the other hand it cannot compensate correlated noise
patterns and the low-frequency intensity gradients above the
center.

In order to find out, whether the approach is able to com-
pete with BM in terms of this residual error, we also com-
pared the residual error of both methods. Fig. 8 shows that
with few and medium motion information the results of our
method are comparable to BM. For higher motion informa-
tion the ability of BM to compensate for correlated noise pat-
terns and moving low-frequency intensity gradients (from re-
construction) outperforms the feature-based method. More-
over, the performance of the feature-based method for a high
amount of motion information is limited by the initial motion
estimation.

Fig. 7: Quadrupled residual error with BM (left, block size
16 x 16) and with our vector field reconstruction (right, 608
features).

5. CONCLUSION

We presented a new method for the compact representation
of smooth motion vector fields for coding 4-D medical im-
ages. In a two-step approach the most important vectors are
detected using a confidence function and then transmitted.
An adapted reconstruction algorithm for the motion of de-
formable tissue can restore the dense vector field, resulting
in an accurate prediction.

Both block matching and smooth vector field prediction
in time direction can lead to better compressions than JPEG
2000 coding of individual slices. However, it was shown
that even in lossless compression of noisy data an adapted
approach for deformable tissue images is better suited for
advanced residual error coding schemes than simple block
matching. While the MSE of the predictions are compara-
ble, a smooth motion vector field can be particularly useful
when using wavelet or pixel context predictive coding.

In order to further improve our algorithm, we plan to ap-
ply a noise de-correlation between frames and extend the ap-
proach to three dimensions in order to incorporate motion in
z-direction. For a comparison with other 3-D state of the art
compression methods like JPEG 2000 3-D or H.264/AVC, we
plan to evaluate other volumes and larger data sets. During
our future research we will also look for an improved mo-
tion estimation scheme which can provide better vectors for
feature culling.
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Fig. 8: MSE over vector information per pixel with BM
(dashed line) and feature based approach (solid line). In-
tensity range of the images was normalized to one.
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