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ABSTRACT

In this paper a novel hierarchical Bayesian model for sparse semi-
supervised hyperspectral unmixing is presented. Adopting the spar-
sity hypothesis and taking into account the convex constraints of
the estimation problem, suitable priors are selected for the model
parameters. Then, a new low-complexity, iterative conditional ex-
pectations algorithm is developed to perform Bayesian inference.
The proposed method converges fast to a sparse solution, which of-
fers improved estimation accuracy. The theoretical results presented
in the paper are fully verified by simulations both on synthetic and
real hyperspectral data.

Index Terms— Constrained sparse regression, hyperspectral
images, linear spectral unmixing

1. INTRODUCTION

Hyperspectral remote sensing has gained considerable attention in
recent years, due to its wide range of applications, e.g. environ-
mental monitoring and terrain classification [1], and the maturation
of the required technology. Hyperspectral sensors are able to pro-
duce image cubes by sampling the electromagnetic spectrum in tens
or hundreds of contiguous spectral bands from the visible to the
near-infrared region. However, due to their low spatial resolution,
more than one different materials can be mixed in a single pixel,
which calls for spectral unmixing, [1]. In spectral unmixing, the
measured spectrum of a mixed pixel is decomposed into a collec-
tion of constituent spectra, called endmembers. In addition, a set of
corresponding to endmembers fractions, called abundances, are ob-
tained, that indicate the proportion of each endmember contributing
to the pixel.

Semi-supervised unmixing, [2, 3], which is the case considered
in this paper, assumes that the spectral signatures of all the end-
members present in the image are available. The objective of semi-
supervised unmixing is (a) to determine how many and which end-
members are present in the mixed pixel under study and (b) to use
the selected endmembers to estimate the corresponding abundance
fractions. In the latter case, the abundance fractions should sat-
isfy two constraints in order to remain physically meaningful; they
should be non-negative and sum to one. It should be emphasized
that since only a small number of endmembers are mixed in a sin-
gle pixel, the solution to this problem is inherently sparse. In this
framework, a number of semi-supervised unmixing techniques have
been recently proposed in [3, 4, 5], based on ℓ1-norm penalization
to enhance sparsity.

In this paper, a novel hierarchical Bayesian model is presented,
which is based on the sparsity hypothesis and non-negativity prop-
erty of the abundance vector. Appropriate prior distributions are as-
signed to the unknown parameters of the model, which reflect prior
knowledge about their natural characteristics. Since the resulting
joint posterior distribution of the model does not possess a tractable
analytical form, a novel iterative method is developed, which can
be considered as a deterministic approximation of the Gibbs sam-
pler. More specifically, instead of sampling the conditional poste-
rior distributions, as in conventional Gibbs sampling schemes [2],
the proposed method uses their corresponding expectations, which

can be expressed in tractable closed forms. The proposed Bayesian
inference algorithm iterates through the derived conditional expec-
tations, and produces a point estimate of the abundance vector. In
addition, this estimate turns out to be sparse, thus, verifying the
sparsity promoting nature of the proposed Bayesian approach. Be-
sides its fast convergence, the new algorithm is computationally ef-
ficient and offers improved estimation accuracy, as corroborated by
comparing its performance with that of other related algorithms via
computer simulations.

Notation: We use lowercase boldface and uppercase boldface

letters to represent vectors and matrices respectively. With (·)T we

denote transposition, and with ‖·‖2 the ℓ2 norm, (‖x‖2
2 = xT x).

The determinant of a matrix or the absolute value of a scalar is de-
noted by |·|, while diag(x) stands for a diagonal matrix, that con-
tains the elements of vector x on its diagonal. Finally, 0 denotes
the zero vector, 1 the all-ones vector, and IK is the K ×K identity
matrix.

2. PROBLEM FORMULATION

Let y denote a M × 1 hyperspectral image pixel vector containing
the measured reflectance values of the pixel in M spectral bands.
Let Φ = [φ1, φ2, . . . , φN ] stand for the M × N endmember ma-
trix, where N is the number of all available endmembers and also
let w = [w1, w2, . . . , wN ]T be the pixel’s corresponding vector
of abundances. Adopting the linear mixture model (LMM), every
pixel y of the image is modeled as

y = Φw + n, (1)

where the additive noise n is assumed to be a zero-mean, Gaus-
sianly distributed random vector, with independent and identically
distributed (i.i.d.) elements, i.e., n ∼ N (n|0, β−1IM ), where
β denotes the inverse of the noise variance (precision). Due to
physical considerations, the abundance vector w satisfies the non-
negativity and additivity constraints, i.e., wi ≥ 0, i = 1, 2, . . . , N ,

and
 N

i=1 wi = 1,
In this work, a semi-supervised hyperspectral unmixing tech-

nique is introduced, where the full endmember matrix Φ is assumed
to be known a priori. This mixing matrix Φ can either stem from
a spectral library or it can be determined using an endmember ex-
traction technique, e.g., [6,7]. The aim is to estimate the abundance
vector w, subject to the previous constraints. Additionally, the rea-
sonable assumption that only few of the available N endmembers
are present in each pixel, gives rise to the sparsity property of w,
which is exploited by the hierarchical Bayesian model introduced
in the following sections.

3. HIERARCHICAL BAYESIAN MODEL

3.1 Likelihood

The LMM of (1) and the Gaussian property of the noise vector n
yield the following likelihood function for y

p(y|w, β) = (2π)−
M

2 β
M

2 exp

!

−β

2
‖y − Φw‖2

2

"

. (2)
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3.2 Parameters’ prior distributions

In this section, the prior distributions for the model parameters w
and β are introduced. Accounting for the non-negativity property
of w, and assuming that all wi’s are i.i.d., a normal distribution

truncated on the non-negative orthant RN
+ of the N -dimensional

Euclidean space RN is assigned to w, i.e.,

p(w|γ, β)=

N
 

i=1

!

N (wi|0,
γi

β
) I

R1
+
(wi)

"

= 2N (2π)−
N

2 β
N

2 |Λ| 12 exp

!

−β

2
w

T
Λw

"

I
RN

+
(w) (3)

where R1
+ is the set of non-negative real numbers, I

RN

+
(·) is the

indicator function1 for RN
+ , γ = [γ1, γ2, . . . , γN ]T is a N × 1

vector of hyperparameters, γi ≥ 0, and Λ−1 = diag(γ).
For β, a conjugate Gamma prior with respect to the Gaussian

likelihood of (2) is selected, expressed as

p(β|κ, θ) = Γ(β|κ, θ) =
θκ

Γ(κ)
β

κ−1exp [−θβ] , (4)

where β ≥ 0, and κ ≥ 0, θ ≥ 0 are the distribution parameters.

3.3 Hyperparameters’ prior distributions

This work extends the model of [8, 9], by assigning an independent
Gamma distribution to every γi, each parameterized by a distinct
hyperparameter λi, i.e.,

p(γi|λi) = Γ(γi|1,
λi

2
) =

λi

2
exp

!

−λi

2
γi

"

, i = 1, 2, . . . , N,

(5)
Then, the combination of the hierarchical priors given in (3) and (5)
leads to a sparsity-promoting, non-negative (truncated) Laplace dis-
tribution for w (this formulation gives rise to the so-called Bayesian
Lasso [9]). This distribution can be obtained by marginalizing the
hyperparameter vector γ from the model, i.e.,

p(w|λ, β) =

#

p(w|γ, β)p(γ|λ)dγ

= β
N

2 |Ψ| 12 exp

$

−
%

β

N
&

i=1

√
λi |wi|

'

I
RN

+
(w), (6)

where λ = [λ1, λ2, . . . , λN ]T and Ψ = diag(λ). The motivation
to use a hyperparameter vector λ instead of a single λ for all γi’s as
in [9,8], is to form a hierarchical Bayesian analogue to the adaptive
Lasso, proposed in [10]. Indeed, it can be shown, that the maximum
a posteriori (MAP) estimator of w, which is distributed according
to (6), is the solution to the following optimization problem,

w̃ = arg min
w

(

β

2
‖y − Φw‖2

2 +

N
&

i=1

αi|wi|
)

, s.t. w ∈ R
N
+ ,

(7)
which, excluding the non-negativity constraint, coincides with the
definition of the adaptive Lasso, [10].

It is obvious from (6) that the quality of the endmember se-
lection procedure depends on the tuning parameter vector λ. We
choose to infer the hyperparameter vector λ from the data, by as-
suming a Gamma hyperprior for each element of λ,

p(λi|r, δ) = Γ(λi|r, δ) =
δr

Γ(r)
λi

r−1exp [−δλi] , i = 1, 2, . . . , N

(8)

1
I
RN

+
(x) = 1(0), if x ∈ R

N
+ (x /∈ R

N
+ ).

where r and δ are hyperparameters, with r ≥ 0 and δ ≥ 0. Both
Gamma priors of β, in (4), and λi, in (8), are flexible enough to
express prior information, by properly tuning their hyperparame-
ters. In this paper, the hyperparameters κ, θ, r, δ are set to zero as
in [2, 8], forming non-informative (Jeffreys’) priors, although other
values can, in principle, be selected.

4. BAYESIAN INFERENCE

As it is common in Bayesian inference, the estimation procedure is
based on the computation of the joint posterior distribution of the
parameters. For the model presented in Section 3, this posterior is

p (w, β, γ, λ|y) =
p (y|w, β) p (w|β, γ) p (γ|λ) p (λ) p (β)

p(y)
,

(9)
which is intractable, because p(y) cannot be computed analytically.
To overcome this obstacle, a Markovian Gibbs sampling strategy
can be followed, in which the conditional posterior distributions of
the associated parameters are utilized.

4.1 Posterior conditional distributions

In the following, analytical expressions are derived for the posterior
conditional distributions of the model parameters w, γ , λ and β.
Starting with w, it can be easily shown that its posterior conditional

density is the multivariate Gaussian, truncated in RN
+ ,

p(w|y, γ, λ, β) = N (w|µ,Σ)I
RN

+
= N

RN

+
(w|µ,Σ) (10)

where Σ and µ are respectively expressed as follows,

Σ = β
−1
*

Φ
T
Φ + Λ

+−1

, µ = βΣΦ
T
y. (11)

The posterior conditional for the precision parameter β, is easily
shown to be a Gamma distribution, i.e.,

p(β|y,w, γ, λ) =

Γ

,

β|M + N

2
+ κ,

1

2
‖y − Φw‖2

2 + θ +
1

2
w

T
Λw

-

(12)

Straightforward computations yield that the conditional distribution
of γi given y, wi, λi, β is expressed as

p(γi|y, wi, λi, β) =

,

λi

2π

-

1
2

γ
− 1

2

i exp

!

−βw2
i

2γi
− λi

2
γi +

+
%

βλi |wi|
+

, i = 1, 2, . . . , N

(13)

Finally, the conditional posterior of λi given y, wi, γi, β also turns
out to be a Gamma distribution,

p(λi|y, wi, γi, β) = Γ
.

λi|1 + r,
γi

2
+ δ
/

, i = 1, 2, . . . , N.

(14)
By simple inspection, it can be verified that the conditional distri-
bution in (13) is not easy to sample. To circumvent this, we pro-
pose a deterministic approximation of the Gibbs sampler, where the
randomly generated samples of the Gibbs sampler are replaced by
the means of the corresponding conditional distributions, (10), (12),
(13) and (14), as explained in Section 5. Thus, a novel scheme iter-
ating among the conditional means of w, β, γi and λi arises, which
will be termed Bayesian inference iterative conditional expectations
(BI-ICE) algorithm. It should be emphasized that by following this
approach, we depart from the statistical framework implied by the
Gibbs sampler and we end up with a new deterministic algorithm
for estimating the parameters of the proposed hierarchical model.
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5. THE PROPOSED BI-ICE ALGORITHM

As mentioned previously, BI-ICE needs the conditional expecta-
tions of the model parameters. These are computed analytically as
described below:

Expectation of p(w|y, γ, λ, β) w: As shown in (10),
p(w|y, γ, λ, β) is a multivariate Gaussian distribution, truncated in

RN
+ . In the one-dimensional case, the expectation of the truncated

Gaussian distribution in R1
+ can be computed as

x ∼ N
R1

+
(x|µ∗

, σ
∗) ⇒ E [x] = µ

∗ +

1√
2π

exp
 

− 1
2

µ∗2

σ∗2

!

1 − 1
2
erfc

 

µ∗√
2σ∗

! σ
∗
,

(15)
where erfc(·) is the complementary error function. Unfortunately,
to the best of our knowledge, there is no analogous closed-form ex-
pression for the N -dimensional case. However, as shown in [11],
the distribution of the ith element of w conditioned on the remain-
ing elements w¬i = [w1, . . . , wi−1, wi+1, . . . , wN ]T , can be ex-
pressed as

wi|w¬i ∼ N
R1

+
(wi|µ∗

i , σ
∗
ii) (16)

µ
∗
i = µi + σ

T
¬iΣ

−1
¬i¬i (w¬i − µ¬i) (17)

σ
∗
ii = σii − σ

T
¬iΣ

−1
¬i¬iσ¬i, (18)

where matrix Σ¬i¬i is formed by removing the ith row and the ith
column from Σ, the (N − 1) × 1 vector σ¬i is the ith column of
Σ after removing its ith element σii and µi is the ith element of
µ. Based on this result, an iterative procedure is proposed in order
to compute the mean of the posterior p(w|y, γ, λ, β). Specifically,
the j-th iteration, j = 1, 2, . . . , of this procedure is described as

follows2

1. w
(j)
1 = E[p(w1|w(j−1)

2 , w
(j−1)
3 , . . . , w

(j−1)
N )]

2. w
(j)
2 = E[p(w2|w(j)

1 , w
(j−1)
3 , . . . , w

(j−1)
N )]

... (19)

N. w
(j)
N = E[p(wN |w(j)

1 , w
(j)
2 , . . . , w

(j)
N−1)]

This procedure is repeated iteratively until convergence. Experi-
mental results have shown that the iterative scheme in (19) con-
verges to the mean of w ∼ N

RN

+
(w|µ,Σ) after a few iterations.

Expectation of p(β|y,w, γ, λ): The mean value of the Gamma
distribution of (12) is given by

E [p(β|y,w, γ, λ)] =
M+N

2
+ κ

1
2
‖y − Φw‖2

2 + θ + 1
2
wT Λw

(20)

Expectation of p(γi|y, wi, λi, β): It can be shown that the ex-
pectation of (13) is expressed as

E [p(γi|y, wi, λi, β)] =

"

2λi

π

#

1
2
"

βw2
i

λi

#

3
4

exp
$

%

βλi |wi|
&

K3/2

 

%

βλi |wi|
!

, (21)

where Kν(·) stands for the modified Bessel function of second kind
of order ν.

Expectation of p(λi|y, wi, γi, β): Finally, the mean value of
the Gamma distribution (14) is

E [λi|y, wi, γi, β)] =
1 + r

1
2
γi + δ

. (22)

2In the following, for notational simplicity, the expectation Ep(x|y)[x]
of a random variable x with conditional distribution p(x|y) is denoted as

E[p(x|y)].

Table 1. The BI-ICE algorithm
Input Φ, y, κ, θ, r, δ

Initialize γ(0) = λ(0) = 1, β(0) = 0.01 ‖y‖2
for t = 1, 2, . . . do

- Compute w(t) as follows

Compute Σ(t), µ(t) using (11)

Set v(0) = µ(t)

Compute v
(1)
1 = E

$

p(v1|v(0)
2 , . . . , v

(0)
N )

&

,

using (17), (18), and (15)

Compute v
(1)
2 = E

$

p(v2|v(1)
1 , v

(0)
3 , . . . , v

(0)
N )

&

,

using (17), (18), and (15)
...

Compute v
(1)
N = E

$

p(vN |v(1)
1 , v

(1)
2 , . . . , v

(1)
N−1)

&

,

using (17), (18), and (15)

Set w(t) = v(1)

- Compute β(t) = E
$

p(β|y,w(t), γ(t−1), λ(t−1)
&

, using (20)

- Compute γ
(t)
i = E

$

p(γi|y, w
(t)
i , λ

(t−1)
i , β(t))

&

,

i = 1, 2, . . . , N, using (21)

- Compute λ
(t)
i = E

$

p(λi|y, w
(t)
i , γ

(t)
i , β(t))

&

,

i = 1, 2, . . . , N, using (22)
endfor

The basic steps of the proposed BI-ICE algorithm are summa-

rized in Table 1. Regarding the updating of parameter w(t), an
auxiliary variable v has been utilized in Table 1. This is initialized

with µ(t) (the value of µ at iteration t) and is updated by perform-
ing a single iteration of the scheme described in (19). The resulting

value of v is assigned to w(t). The rationale behind this choice
is that for Σ diagonal (which happens when the columns of Φ are
orthogonal), it easily follows from (17), (18) that the wi’s in (19)
are uncorrelated. Thus, a single iteration is sufficient to obtain the
mean of N

RN

+
(w|µ,Σ). Although, this is not valid when Σ is not

diagonal, experimental results have evidenced that the estimation of
the mean of N

RN

+
(w|µ,Σ) resulting after the execution of a single

iteration of the scheme in (19) is also sufficient in the framework of
the BI-ICE algorithm.

A basic advantage of the proposed Bayesian approach, which
is the Bayesian analogue to the adaptive Lasso, is that all parame-
ters are naturally estimated from the data. In contrast, deterministic
algorithms for solving the Lasso, e.g. [10], face the problem of fine-
tuning specific parameters (corresponding to λ of our model), that
control the sparsity of the solution. As shown in the simulations
presented in the next section, the BI-ICE algorithm converges very
fast, and retains the sparsity of the solution. It has been further
observed that by initializing w with µ, a single cycle is sufficient
for the inner sampler to converge. The computational complexity
of the proposed method can be further reduced by avoiding the ex-

plicit computation of the matrcies Σ−1
¬i¬i in (17), (18). Due to space

limitations, this issue will not be elaborated any further.
It is worth noting that the additivity constraint can be incorpo-

rated in the model deterministically, by augmenting the initial LMM
of (1) with an extra equation, as in [3], i.e.,

'

y
α

(

=

'

Φ

α1T

(

w +

'

n
0

(

(23)

where α is a scalar parameter, which controls the effect of the sum-
to-one constraint on the estimation of w. The larger the value of
α is, the closer the sum of the estimated wi’s will be to one. Note
that modifying the LMM as in (23) does not affect the proposed
hierarchical Bayesian model and the subsequent analysis.
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Fig. 1. (a) Mean square error of w for the simulated hyperspectral
image. (b) Convergence of the abundance fractions for one pixel.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Simulation results on synthetic data

The performance of the BI-ICE algorithm is illustrated by unmixing
a synthetic hyperspectral image, using data from the USGS spectral
library, [12]. Specifically, 30 endmembers were selected from the
library, to construct a 470×30 endmember matrix, having condition
number 1.73 · 103. The number of disparate endmembers compos-
ing a single pixel varied between one (pure pixel) and five, whereas
the abundances were generated according to a Dirichlet distribution,
so as to satisfy the positivity and sum-to-one constraints. The ob-
servations were corrupted by Gaussian noise, whose variance was
determined by the SNR level. The BI-ICE algorithm was com-
pared to (a) the least squares (LS) algorithm, (b) the weighted least
squares (WLS) algorithm, where only the additivity constraint is
imposed using (23), (c) the orthogonal matching pursuit (OMP) al-
gorithm, and (d) a quadratic programming (QP) technique, which
enforces the constraints, but does not exploit the problem’s spar-
sity, [13]. For different levels of SNR, the corresponding MSE

curves (MSE = E[
‖w−w̃‖2

2

‖w‖2
2

]) are shown in Fig. 1(a). It can be

seen that the proposed algorithm outperforms the LS, WLS and
OMP algorithms and has similar performance to the QP scheme.
Due to the high conditioning of Φ, OMP fails, while for high SNRs
the BI-ICE algorithm has the lowest MSE. It should be also noted
that, compared to QP, the proposed BI-ICE algorithm produces es-

Fig. 2. Band 150 of a subimage of the Cuprite Aviris hyperspectral
data set.

timates for all model parameters (e.g., the noise variance), and pro-
vides confidence intervals for these estimates. The fast convergence
and sparsity promoting nature of the new algorithm are depicted in
Fig 1(b). A pixel with three non-zero abundances (0.1397, 0.2305,
0.6298) is considered with SNR = 25dB. The curves in Fig. 1(b)
are the average of 50 realizations, where not only the noise but also
the positions of the non-zero abundances in w varies. We observe
that less than 10 iterations are sufficient for the BI-ICE algorithm to
converge to the correct values. Moreover, all remaining abundance
fractions become zero after a few iterations.

6.2 Simulation Results on Real Data

This section describes the application of the proposed BI-ICE algo-
rithm to real hyperspectral image data. The real data were collected
by the airborne visible/infrared imaging spectrometer (AVIRIS)
flight over the Cuprite mining site, Nevada, in 1997, [14]. The
AVIRIS sensor is a 224-channel imaging spectrometer with ap-
proximately 10-nm spectral resolution covering wavelengths rang-
ing from 0.4 to 2.5 µm. The spatial resolution is 20 m. This data
set has been widely used for remote sensing experiments [6,7]. The
spectral bands 1-2, 104-113, 148-167, and 221-224 were removed
due to low SNR and water-vapor absorption. Hence, a total of 188
bands were considered in this experiment. The subimage of the
150th band, including 200 vertical lines with 200 samples per line
(200 × 200) is shown in Fig. 2.

The VCA algorithm described in [6], was used to extract 14
endmembers present in the image. Using these spectral signatures,
three algorithms are tested to estimate the abundances, namely the
LS algorithm, the QP method, and the proposed BI-ICE algorithm.
The unmixing process generates an output image for each endmem-
ber, depicting the endmember’s estimated abundance fraction for
each pixel. The darker the pixel, the smaller the contribution of this
endmember in the pixel is. On the other hand, a light pixel indi-
cates that the proportion of the endmember in the specific pixel is
high. The abundance fractions of four endmembers, estimated us-
ing the LS, QP and BI-ICE algorithms, are shown in Fig. 3a, Fig.
3b, and Fig. 3c, respectively. Note that, for the sake of comparison,
a necessary linear scaling in the range [0 1] has been performed for
the LS abundance images. By simple inspection, it can be observed
that the images taken using the LS algorithm clearly deviate from
the images of the other two methods. The LS algorithm imposes
no constraints on the estimated abundances, and hence the scaling
has a major impact on the abundance fractions, resulting in perfor-
mance degradation. On the contrary, the images obtained by QP
and BI-ICE share a high degree of similarity and are in full agree-
ment with previous results concerning the selected abundances and
reported in [6,7], as well as with the conclusions derived in Section
6.1.
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(a) LS algorithm

(b) QP algorithm

(c) BI-ICE algorithm

Fig. 3. Estimated abundance values of four endmembers using: (a) the LS algorithm, (b) the QP algorithm, (c) the proposed BI-ICE
algorithm
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