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ABSTRACT
Bit interleaved Coded Modulation with iterative decoding is known
to provide excellent performance over both Gaussian and fading
channels. However a complete analysis of the iterative demodula-
tion is still missing. In this paper, the iterative decoding is analyzed
from a game-theoretic point of view in order to explain the good
performance of turbo-decoding. It is shown that iterative decoding
is a game seeking a solution to an optimization problem obtained
from parallel approximations of the maximum likelihood decoding.
Surprisingly, the decoder and demapper are not antagonist players.
They are involved in a cooperative process in which n selfish play-
ers attempt to optimize their own bit-marginals. An interpretation is
given in terms of pure Nash Equilibrium and social welfare. The ap-
proximate criterion of the sub-optimal problem is the social welfare
of the game and is also a performance rating on the distributed opti-
mization process. The convergence is analysed and it is proved that
it always exists a convergent iterative sequence leading to a Nash
equilibrium of the game. Experimental results are provided in the
particular case of BICM decoding.

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggested by
Zehavi in [1] to improve the Trellis Coded Modulation performance
over Rayleigh-fading channels. In BICM, the diversity order is
increased by using bit-interleavers instead of symbol interleavers.
This improvement is achieved at the expense of a reduced mini-
mum Euclidean distance leading to a degradation over non-fading
Gaussian channels [1], [2]. This drawback can be overcome by us-
ing iterative decoding (BICM-ID) at the receiver.
The iterative decoding scheme used in BICM-ID is very similar
to serially concatenated turbo-decoders. Indeed, the serial turbo-
decoder makes use of an exchange of information between compu-
tationally efficient decoders for each component code. In BICM-ID,
the inner decoder is replaced by demapping which is less computa-
tionally demanding than a decoding step. Even though this paper
focus on iterative decoding for BICM, the results can be applied to
the large class of iterative decoders including serial or parallel con-
catenated turbo-decoders.
The turbo-decoder and more generally iterative decoding was not
originally introduced as the solution to an optimization problem,
thus rendering the analysis of its convergence and stability very dif-
ficult. Among the different attempts to provide an analysis of iter-
ative decoding, the EXIT chart analysis and density evolution have
permitted to make significant progress [3] but the results developed
within this setting apply only in the case of large block length. An-
other tool of analysis is the connection of iterative decoding to factor
graphs [4] and belief propagation [5]. Convergence results for belief
propagation exist but are limited to the case where the correspond-
ing graph is a tree which does not include turbo-codes. A link be-
tween iterative decoding and classical optimization algorithms has
been made also in [6] where the turbo-decoding is interpreted as
a nonlinear block Gauss-Seidel iteration for solving a constrained
optimization problem. In [7] and in [8], the turbo-decoding is in-
terpreted in a geometric setting leading to new but incomplete re-

sults. The failure to obtain complete results is mainly due to the
inability to efficiently describe extrinsic information passing. The
relation between the optimal maximum likelihood decoding and it-
erative decoding is not yet fully understood.
In this paper, we first review the principle of maximum likelihood
decoding. We then recall some results of [9] in order to explain
how an approximate (and tractable) criterion can be derived from an
equivalent and convenient formulation of the maximum likelihood
decoding. A new interpretation based on the Hamming distance
between binary words is provided. It is proved that iterative decod-
ing can be understood as a game between n players (where n is the
length of any codeword at the output of the convolutional encoder).
The (tractable) criterion is the social welfare of the game. As we
will see, the players are not the decoder and demapper. These two
constituent elements are involved in a cooperative process and con-
tribute to the utility function of any player. It turns out that the play-
ers are concerned with the optimization of a unique bit-marginal.
The convergence toward a Nash Equilibrium (NE) of the game is
also studied and we prove that it always exists values of the key pa-
rameter β (to be defined in section 4) that guarantee the convergence
to a NE of the game from any initialization point. The parameter β
is a trade-off between convergence and optimality of the joint op-
timization process. These results are illustrated for BICM iterative
decoding in the simulation part.

2. SYSTEM MODEL

A conventional BICM system [2] is built from a serial concatena-
tion of a convolutional encoder, a bit interleaver and an M-ary bits-
to-symbol mapping (where M = 2m) as shown in Figure 1. The
sequence of information bits b of length nb is first encoded by a
convolutional encoder to produce the output encoded bit sequence c
of length n which is then scrambled by a bit interleaver (as opposed
to the channel symbols in the symbol interleaved coded sequence)
operating on bit indexes. Let d = π(c) denote the interleaved se-
quence. Then, m consecutive bits of d are grouped as a symbol. The
complex transmitted signal sk, 1 ≤ k ≤ n/m, is then chosen from an
M-ary constellation ψ where ψ denotes the mapping scheme. The
symbols sk are passed over a noisy memoryless channel to get the
channel outputs yk. The maximum likelihood sequence detection

Figure 1: BICM transmission scheme

reads:
b̂MLD = arg max

b∈{0,1}nb
p(y | b) (1)

where p(y | b) is the likelihood function which results from con-
catenating the encoder with the channel. Since there is a one-to-one
correspondence between the binary message b and the interleaved
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sequence d, eq. (1) is equivalent to searching d̂MLD as:

d̂MLD = arg max
d∈{0,1}n

pch(y | d)Ico(d) (2)

where pch(y |d) is the probability of receiving y when the sequence
transmitted through the channel is the mapping of d and where
Ico(d) is the indicator function of the code meaning that Ico(d) = 1
if c = π−1(d) is a codeword and 0 elsewhere. Another way to
tackle this problem consists in finding the prior PMF on d which
maximizes the a posteriori probability of having received y

p̂MLD(d) = arg max
p∈Es

∑
d
Ico(d)pch(y | d)p(d) (3)

where ES stands for the set of all possible separable PMFs on d.
By definition, a PMF p(d) is separable if p(d) = ∏i pi(di) with
pi(di) the probability for bit i to be equal to di. The optimal solution
p̂MLD(d) reads

p̂MLD(d) =
{

1, d= d̂MLD
0, otherwise

(4)

since another weighting (with the constraint ∑d p(d) = 1) produces
a lower likelihood. The formulation in (3) is equivalent to the orig-
inal problem in (2). The practical implementation of this optimiza-
tion problem is dismissed due to the presence of a random bit inter-
leaver and to the (large) numerical value of n. In the next section,
we present a sub-optimal criterion derived from (3). We will see
that the iterative decoding of BICM (and of turbo-like decoding in
general) can be obtained from a particular maximization process of
this suboptimal criterion. Some aspects of the maximization of the
sub-optimal criterion have already been presented in [9]. Some re-
sults of [9] are first recalled in section 3 since they are mandatory
for a full understanding of this paper. We also provide in section
3 a new interpretation of the suboptimal decoding. New results on
the iterative procedure are presented in section 4, they are based on
game theory concepts. In section 5, the convergence issue is ad-
dressed and the results of the paper are illustrated in section 6. In
the rest of the paper, we assume that pch(y | d) is a PMF without
any extra assumption. The results presented here are thus directly
applicable to BICM as well as to serial turbo-codes.

3. SUBOPTIMAL DECODING

The direct computation of the optimal maximum likelihood decoder
is non tractable due to the interleaver and to the computational com-
plexity involved in the computation and storage of the 2n taps of the
PMF. A solution regarding the interleaver is to consider separately
the two-blocks (mapping and coding) in a particular sense to be de-
fined later. The problem of the computational complexity can be
handled by working on the bit-marginals rather than on the PMF
of the whole sequence. For that purpose the variable p(d) is split
into the product of the two separable PMFs l(d) and q(d). The
computation of the bit-marginals is also introduced into the optimal
criterion as

(
l̂MLD(d), q̂MLD(d)

)
=

arg max
l,q∈Es

∑
dk

∑
d:dk

Ico(d)pch(y | d)l(d)q(d)
(5)

The two sums above are exactly the same as the sum over all the
words d. The global maximum is again obtained for the optimal
choice l̂MLD(d) = q̂MLD(d) = p̂MLD(d) as in (4). The formula-
tion in (5) is then equivalent to the original problem since the two
solutions l̂MLD(d) and q̂MLD(d) both select the optimal sequence
d̂MLD of the maximum likelihood decoding problem. Let CMLD de-
note the function (to be maximized) in (5). The direct maximization
of CMLD is not yet tractable. We need to separate the coding part

from the mapping and channel part, this can be done by replacing
the bit-marginals of the product of two PMFs by the product of the
bit-marginals of the two PMFs taken separately. This is of course
an approximation leading to C̃k defined as

C̃k(l,q) =∑
dk

(
∑
d:dk

Ico(d)q(d)
)(

∑
d:dk

pch(y | d)l(d)
)

(6)

This approximation deserves some comments. First, the bit-
marginals in C̃k are now computable in practice. For example
∑d:dk

Ico(d)q(d), 1 ≤ k ≤ n, dk ∈ {0,1} is exactly the output given
by a BCJR algorithm [10]. Next, the function C̃k is dependent of
k: the involved quantities are not the same for two different values
of k (whereas CMLD is independent of k). This suggests that C̃k
should be used for the maximization over the kth bit-marginal.
A distributed optimization strategy will be discussed in section 4.
Last, the functions CMLD and C̃k, 1 ≤ k ≤ n, are equal (meaning
there is no approximation) if the two PMFs involved Ico(d)q(d)
and pch(y | d)l(d)) are separable. Notice that for l(d) = l̂MLD(d)
and q(d) = q̂MLD(d) both PMFs are indeed separable. This is also
true for the whole class of “Kronecker” PMFs in which the global
optimum is always lying. Since criteria C̃k, 1 ≤ k ≤ n, are always
non-negative, the joint maximization of C̃k leads to the maximiza-
tion of C̃ = ∑n

k=1 C̃k. We proved in [9] that, in some very specific
cases, the global maximum of C̃ is the maximum likelihood solu-
tion. We can go further into the interpretation of C̃ and the connec-
tion with the optimal criterion CMLD. By definition,

C̃ (l,q) =∑n
k=1 C̃k(l,q)

=∑n
k=1∑dk ∑d:dk,d′:dk

Ico(d)q(d)pch(y | d′)l(d′) (7)

From eq. (7), we can observe that C̃k is the sum of all possible
values of Ico(d)q(d)pch(y | d′)l(d′) restricted to the pairs (d,d′)
such that dk = d′

k (the value of bit k is the same for d and d’). This
means that:
• a pair (d,d′) such that dk = d′

k and di 6= d′
i for all i 6= k is in C̃k

but not in C̃i, i 6= k.
• a pair (d,d′) such that dk = d′

k , d j = d′
j and di 6= d′

i for all
i /∈ {k, j} is in C̃k and C̃ j but not in C̃i, i /∈ {k, j}.

• a pair (d,d′) such that dk = d′
k for all k ∈ {1,2, ...,n} is in each

C̃k, 1 ≤ k ≤ n. As a consequence this pair will appear n times in
C̃ .

Let Sr denote the set of pairs (d,d′) such that dH(d,d′) = r where
dH (., .) stands for the Hamming distance between two binary words
of length n (the Hamming distance between two binary words of
equal length is the number of positions at which the corresponding
bits are different). The sum in (7) can be organized in the following
manner:

C̃ (l,q) =
n−1

∑
r=0

(n− r)Nr(l,q)

where Nr(l,q) = ∑(d,d′)∈Sr
Ico(d)q(d)pch(y | d′)l(d′). The set

S0 contains the pairs (d,d′) such that d= d′, then we obtain

C̃ (l,q) = nCMLD +
n−1

∑
r=1

(n− r)Nr(l,q) (8)

Since both q and l are PMFs we have 0 ≤
∑(d,d′)∈S0∪S2∪...Sn−1

q(d)l(d′) ≤ 1. As a consequence, a global

maximum (q̂, l̂) is given by q̂(d) = δd,d̂ and l̂(d′) = δd′,d̂′ with

(d̂, d̂′) = argmaxd,d′∈{0,1}n(n − dH(d,d′))Ico(d)pch(y | d′).
From (8), we can see the benefit of the decreasing weighting in
the criterion since pairs (d,d′) with low Hamming distance are
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weighted with high factors (n − dH(d,d′)). Since Ico(d) is an
indicator function (with respect to the convolutional encoder), the
Hamming distance between (d,d′) is also the minimum distance
between d and the set of all possible interleaved codewords.
Thus, d̂′ yields the maximum of the channel probability and d̂
is a codeword with the smallest distance to d̂′. Taken as such,
l̂(d)q̂(d) is not necessarily a PMF. We will see in section 4 that
the iterative solution enforces l̂(d)q̂(d) to be a PMF. This is in
favor of selecting a solution close to the MLD. These facts put
together give an explanation for the near optimal performance
of the iterative decoding. In this section, we have presented the
suboptimal decoding and discussed its connection with the optimal
one. We have seen that C̃ is an accurate approximation of CMLD.
In the next section, we focus on the iterative maximization of C̃ .

4. ITERATIVE DECODING AND NASH EQUILIBRIUM

Let lk(dk) and qk(dk) denote the marginals on any bit dk then
l(d) = ∏n

j=1 l j(d j) and q(d) = ∏n
j=1 q j(d j). The iterative opti-

mization of the global criterion C̃ is untractable since the evaluation
of the gradient with respect to qk(dk) (or lk(dk)) requires the com-
putation of marginals over two bits: ∑d:dk ,di

Ico(d)∏ j 6=i,k q j(d j).
The computation of both (1-bit)-marginals and (2-bits)-marginals
needs the evaluation of n+ n(n−1)

2 marginals which would signifi-
cantly increase the complexity. We have noticed in section 2 that
the sub-optimal criterion C̃k is derived from CMLD when dealing
with the kth bit-marginal. We propose here to consider a distributed
maximization strategy where lk(dk) and qk(dk) are chosen in order
to maximize C̃k as

(
l̂k, q̂k

)
= arg max

lk,qk∈F
C̃k(l,q) (9)

where F is the set of all possible PMFs on dk. The solution of (9)
is given by

l̂k(dk)q̂k(dk) = 1 i f
fdk(q, Ico) fdk(l, pch(y | d))> fdk

(q, Ico) fdk
(l, pch(y | d))

l̂k(dk)q̂k(dk) = 0 otherwise
(10)

where fdk(l, pch(y | d)) = ∑d:dk
pch(y | d)∏ j 6=k l j(d j),

fdk(q, Ico) = ∑d:dk
Ico(d)∏ j 6=k q j(d j) and dk = 1 − dk. An

iterative process propagating hard estimates (0 or 1) is likely to
get stuck in a local minima. A classical solution is to propagate
instead soft-estimates (in [0;1]) and take hard decisions at the end
of the iterative process. For the maximization problem in (9) and
motivated by our previous work in [11], possible soft estimates are:

lk(dk)qk(dk) ∝
(

fdk (q, Ico) fdk (l, pch(y | d))
)β

lk(dk)qk(dk) ∝
(

fdk
(q, Ico) fdk

(l, pch(y | d))
)β (11)

where β is a positive constant. We can observe that β → ∞ (com-
bined with a normalization step) yields the hard estimates (see eq.
(11) characterizing the product lkqk). The individual values of lk
and qk depend on the scheduling of the successive updates. For
β = 1, the choice of a hybrid Jacobi/Gauss-Seidel scheme yields
the classical equation of the iterative decoding of BICM (and of
turbo iterative decoding in general) [9]. In turbo-codes literature,
the product lk(dk)qk(dk) is called a posteriori probability (APP) and
lk and qk are the extrinsics. At this step, there is no justification for
choosing a particular value of β . This point will be addressed in
sections 5 and 6.
The APP are defined up to a multiplicative constant, we build from

(11) the log-likelihood ratios (LLR) λl,k and λq,k as

λl,k +λq,k = log
(

lk(dk)qk(dk)
lk(dk)qk(dk)

)
(12)

= β log
(

fdk(q, Ico)
fdk

(q, Ico)

)
+β log

(
fdk (l, pch(y | d))
fdk

(l, pch(y | d)

)
(13)

where λl,k +λq,k are the LLRs for the bit in position k, 1 ≤ k ≤ n.
We also denote λl,−k +λq,−k the LLR vectors for all the bits except
the bit in position k. The LLRs in (12-13) are a solution to the
maximization of a strictly convex utility function Uk defined in the
following manner:

Uk(λl,k,λq,k,λl,−k,λq,−k) =−‖λl,k +λq,k

−β log
(

fdk (q,Ico)
fdk

(q,Ico)

)
−β log

(
fdk (l,pch(y|d))
fdk

(l,pch(y|d)

)
‖2 (14)

Iterative decoding can thus be understood as a game with n players
where each player attempts to maximize (selfishly) its own utility
function. We can notice that the decoder and the demapper are in-
volved in a cooperative process since they both contribute to the
utility function of all players. More formally, a game G is defined
as a triplet G = (K,{Si}i∈K ,{ui}i∈K) where K = {1,2, ...,n} is a fi-
nite set of players, ∀i ∈ K, {Si} is the set of strategy of player i and
Ui its utility function. In iterative decoding, the set of variables of
player i are si = (λl,i,λq,i) and s−i is the set of variables of the other
players. A pure Nash Equilibrium (NE) is defined in the following
manner [12].

Definition 1 A profile s∗ is a (pure) NE for G if ∀i ∈ K, ∀s′i ∈ Si,
ui(s∗i ,s

∗
−i) ≥ ui(s′i,s

∗
−i). If the inequality holds strictly for all play-

ers, then the equilibrium is classified as a strict NE.

A NE is stable to a single deviation meaning that a player can not
increase its utility function by changing unilaterally his strategy. Let
(λl∗ , λq∗) denote a pair of LLRs satisfying equations (12-13).

Proposition 1 Let (λl∗ , λq∗) denote a pair of LLR vectors with
elements λl∗,k, λq∗,k satisfying eq. (12)-(13) ∀k ∈ {0,1, ...,n}.
Then, (λl∗ , λq∗) is a NE of the game Gso f t with K = {0,1, ...,n},
{Si}i∈K = R2 and {Ui} defined as in (14). If the solution of (12)-
(13) is unique then (λl∗ , λq∗) is a strict NE of the game Gso f t .

Proof: If λl∗,k , λq∗,k is a solution of (12)-(13) then it is a global
maximizer of Uk. Since this is true ∀k ∈ {0,1, ...,n}, (λl∗ , λq∗) is
a NE for the game Gso f t . If the solution of (12)-(13) is unique then
(λl∗ , λq∗) is a strict NE.

Proposition 2 Let (λl∗ , λq∗) denote a pair of LLR vectors with
elements λl∗,k, λq∗,k satisfying eq. (12)-(13) ∀k ∈ {0,1, ...,n}.
Then (l∗, q∗) is an “induced” equilibrium of the game Ghard with
K = {0,1, ...,n}, {Si}i∈K = [0,1]× [0,1] and with utility function C̃i
defined as in (6) meaning that ∀i ∈ K, ∀s′i = (li(di),qi(di)) ∈ Si,

C̃i(H(s∗i ),s
∗
−i)≥ C̃i(s′i,s

∗
−i)

where H(s∗i ) is a hard decision operator that returns the nearest
integer for all the elements in s∗i .

The proof is obvious by considering eq. (10). The equilibrium de-
fined in proposition 2 is not a NE since it does not match definition
1. It is however an equilibrium since a single deviation of user k
from H(l∗k (dk)q∗k(dk)) (the hard decision on the APP of the bit in
position k) will have a cost (lower value of the utility function of
user k) if the other players maintain their strategy (l∗−i(di),q∗−i(di)).

Definition 2 The social welfare of a game is defined as the sum of
the utilities of all players

W =
n

∑
i=1

ui
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The social welfare [13] is a measure of efficiency of a society. In
the turbo-decoding environment, it can be seen as a performance
rating on the efficiency of the optimization process. In this section,
two games are considered Ghard and Gso f t . The social welfare
Wso f t associated with the utility functions Ui has no interest
since for any NE Wso f t = 0. At the opposite, the social welfare
Whard (associated with the utility functions C̃i) coincides with
the suboptimal criterion C̃ . The social welfare Whard is thus a
performance rating on the efficiency of the optimization process:
low scores mean poor (joint)-optimization process whereas high
scores mean a near-optimal (joint)-optimisation. Moreover, C̃ is in
connection with the MLD criterion which suggests that the MLD
solution has more chance to be obtained for higher scores of Whard .
The existence of a NE is an important issue. At that point, we have
no guarantee that (12-13) always have a solution. This question
has been addressed in [7] in the case of turbo decoding (which
includes BICM) by proving the existence of at least one solution
to the fixed point problem in (12-13) when β = 1. Hence, the
turbo-decoding algorithm always possesses (at least) one (pure) NE.

5. CONVERGENCE

In BICM and in turbo-decoding in general, the decoding process
is initialized by choosing (λl(0) , λq(0)) = 0. This is equivalent to

choosing a uniform distribution for l(0) and q(0). Even if a NE
always exists there is no guarantee that the iterative process will
converge toward a NE when starting from this initialization point. In
this section, we consider the usual scheduling of iterative decoding
[9], a mixed Jacobi/Gauss-Seidel strategy. In that case, the iterative
process solves alternately the two equations below (15-16). The NE
is thus obtained as the solution of the system of equations

λl,k −β log
(

fdk (q, Ico)
fdk

(q, Ico)

)
= 0 ∀k ∈ {1,n} (15)

λq,k −β log
(

fdk(l, pch(y | d))
fdk

(l, pch(y | d)

)
= 0 ∀k ∈ {1,n} (16)

Obviously, if (λl∗ ,λq∗) is a solution of (15-16), it is also solution of
(12-13). We use the compact notation F(λl∗ ,λq∗) = 0 to denote the
system of equations (15-16). To prove the convergence, we calcu-
late the Jacobian ∇F (with respect to (λl∗ ,λq∗)). Define the mea-
sures p1(d) = K1Ico(d)q(d) and p2 = K2 pch(y | d)l(d) where K1
and K2 are normalization factors. Define the matrices C, G whose
elements are

[C]i, j = p1[d j = 1|di = 1]− p1[d j = 1|di = 0]
[G]i, j = p2[d j = 1|di = 1]− p2[d j = 1|di = 0]

The Jacobian ∇F reads [6]:

∇F =
(

I β (I−C)
β (I−G) I

)
(17)

where I is the identity matrix of size n×n. We proved in [9] that the
iterative decoding process is an hybrid Jacobi/Gauss-Seidel method.
The Gauss-Seidel method was originally used to solve a linear sys-
tem of equation Ax = b. The procedure is known to converge if
either A is symmetric positive-definite, A is an M-matrix or A is
strictly or irreducibly diagonally dominant. Some of these condi-
tions have been extended to the case of a nonlinear system of equa-
tion where A is replaced by ∇F . In [6], the authors consider the
situation where ∇F is an M-matrix. By definition, an M-matrix has
non positive off diagonal elements. From (17) and from the defini-
tions of C and G, it seems very unlikely that ∇F is an M-matrix in
most cases. At the opposite, the expression of (17) suggests that ∇F
could be a strict diagonally dominant matrix. The extension of the
properties of convergence for the Jacobi and Gauss-Seidel method
in the case of nonlinear systems of equations with strictly diagonally
dominant Jacobian is due to Moré and is published in [14].

Definition 3 Let A denote a n×n matrix with elements ai j in R. A
is a strictly diagonal dominant matrix if

|aii|>∑
j 6=i

|ai j| ∀i ∈ {1, ...,n}

In the literature, many contributions focus on conditions on the
indicator function(s) of the constituent encoder(s) or on the chan-
nel probability that would guarantee the convergence of the turbo-
decoding process (β = 1) [6, 7]. Up to our knowledge, these condi-
tions are uncheckable in a practical setting. In this paper, the ques-
tion of the convergence is addressed in a different way:

Proposition 3 It always exist β0 > 0 such that ∀β ≤ β0,
∇F(λl,λq)) is a strictly diagonally dominant matrix for all
(λl,λq) ∈ Rn ×Rn.

Proof: ∇F is a strictly diagonal dominant matrix if
β (∑n

j=1, j 6=i |p[d j = 1|di = 1]− p[d j = 1|di = 0]|)< 1 ∀i∈ {1, ...,n}
where p stands for either p1 or p2. Since p is a PMF,
∑n

j=1, j 6=i |p[d j = 1|di = 1] − p[d j = 1|di = 0]| < n. Thus

choosing β0 = 1
n implies that ∇F is a strictly diagonally dominant

matrix ∀β ≤ β0.
In the proof above, the bound β0 = 1/n is far from being optimal.
The highest possible value of β0 for a given setting is expected
to be (significantly) above 1/n. This point will be illustrated in
the simulation part. We can now draw a conclusion from the
results above. The choice of the parameter β is a trade-off between
convergence and optimality of the joint-optimization process:
• Small values of β (≤ β0) means convergence of the iterative

process (this is proved in proposition 3) but leads to small value
of the social welfare.

• High values of β means high values of the social welfare C̃
but the iterative process may not converge. Actually, when β
is large, l and q are getting closer of a Kronecker PMF. For

any NE, C̃ = ∑n
k=1(lk(dk)qk(dk))

β+1
β (see (11) and (6)) and the

value of C̃ increase when l and q are close to a Kronecker PMF.
In the next section, we run several simulations to obtain typical val-
ues of β0 in the particular setting of BICM.

6. SIMULATION

In this section, a classical BICM scheme is used with a (5,7)
convolutional code of rate 1/2. The number of information
bits is nb = 400 (a frame). The code bits are passed through a
random interleaver, mapped using set partitioning and modulated
to 16-QAM symbols. The signal to noise ratio is defined as Eb

N0
,

where Eb denotes the energy per information bit and N0 is the
noise variance. In this section we consider the “classical “ iterative
decoding performed using eq. (15-16) with β = 1 and we make a
comparison with the iterative decoding with β 6= 1. We say that
the iterative decoding converges when an agreement is reached
between the APP at the output of demapper and decoder. Here, the
iterative procedure stops when the norm between these two APP is
less than 10−4.
We first consider the frames in which the classical method (β = 1)
fails to converge and search for the highest possible value of β0
(see proposition (3)) that produces a convergent sequence from the
initial point (λl(0) , λq(0)) = 0. The classical iterative decoding may

not converge for low Eb
N0

. For Eb
N0

= 5dB, among 1000 runs, we

identified 171 non-converging sequences. For Eb
N0

= 6dB, among
4000 runs, we identified 70 non-converging sequences. For each of
them, the value of β has been decreased (by step of −0.05) until
convergence in order to obtain an approximate value of β0 (with a
precision of +/− 0.05). The numerical results are reported in the
graphs of figure 2. We can observe that β0 is significantly larger
than 1/n. The smallest value observed is 0.7 and in most cases
β0 > 0.8. Unfortunately, convergence does not necessarily means
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Figure 2: β0 distribution: (left) Eb
N0

= 5dB - (right) Eb
N0

= 6dB

small BER. For instance when Eb
N0

= 6dB, the average number of
errors observed (message is 400 bits long) in the simulation is
11.84 for the classical decoding and 12.91 when β = β0.
For Eb

N0
equals to 7dB or 8dB, the classical method is convergent in

general. For each frame, the value of β has been increased (by step
of +0.2) until convergence is lost. The numerical values obtained
for β0 are reported in figure 3. For the Eb

N0
under consideration,
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Figure 3: β0 distribution: (left) Eb
N0

= 7dB - (right) Eb
N0

= 8dB

typical values of β0 are between 1 and 3. We claimed in section 5
that higher values of β lead to higher values of the social welfare.
For Eb

N0
= 7dB the average value of C̃ is 0.86 when β = 1 and 0.9

when β = β0. For Eb
N0

= 8dB the average value of C̃ is 0.89 when
β = 1 and 0.93 when β = β0. For each of these runs, the value
of C̃ obtained when β = β0 (> 1) is above the value obtained
with β = 1. In terms of BER, replacing β = 1 with β = β0 is not
efficient. For example with an Eb

N0
= 7dB, the average number of

errors observed is 0.21 for the classical decoding and 0.24 when
β = β0. Changing the value of β does not seem to improve the
BER, however it may have some incidence on the convergence
rate. In particular, it may have the potential for an accelerated
convergence at high Eb

N0
. This is an open issue for further research.

7. CONCLUSION

The iterative turbo-decoding was not originally introduced as the
solution to a well-defined optimization problem. An accurate
justification for the near optimal performance of iterative decoding
remained incomplete. In this paper, the sub-optimal optimization
problem that iterative decoding is seeking to optimize was pre-
sented. It was obtained from the maximum likelihood detection
problem through parallel approximations. An interpretation in
terms of Hamming distance was also provided that gives some clues
for understanding the excellent performance of iterative decoding.
Furthermore, it was proven that the optimization is in fact similar
to a n-player game. Surprisingly, the decoder and demapper are not
antagonist players. They are involved in a cooperative process in
which n selfish players attempt to optimize their own bit-marginals.

The stationary points are the Nash equilibria of the game and the
cost function of the sub-optimal optimization problem is the social
welfare of the game. We have seen that the social welfare is an
indicator of the trade-off obtained between the separate optimiza-
tion of the bit-marginals and the joint-optimization of the whole
sequence. The convergence was also analysed and it is proved
that convergence to a Nash equilibrium of the game is always
possible but this is at the cost of a smaller social welfare. From the
simulation, we have understood that the attainable social welfare
is dependent of the signal to noise ratio. We conjecture that the
parameter β could serve for increasing the convergence rate at high
signal to noise ratio. We are currently investigating in this direction.
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