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ABSTRACT

A multiscale variant of the block compressed sensing with
smoothed projected Landweber reconstruction algorithm is
proposed for the compressed sensing of images. In essence,
block-based compressed-sensing sampling is deployed inde-
pendently within each subband of each decomposition level
of a wavelet transform of an image. The corresponding mul-
tiscale reconstruction interleaves Landweber steps on the in-
dividual blocks with a smoothing filter in the spatial domain
of the image as well as thresholding within a sparsity trans-
form. Experimental results reveal that the proposed multi-
scale reconstruction preserves the fast computation associ-
ated with block-based compressed sensing while rivaling the
reconstruction quality of a popular total-variation algorithm
known for both its high-quality reconstruction as well as its
exceedingly large computational cost.

1. INTRODUCTION

There has been increasing interest in deploying the paradigm
of compressed sensing (CS) for the sampling and reconstruc-
tion of image data. Since real-world images are almost al-
ways compressible in some transform domain, the mathe-
matics of CS apply directly to image data, and any existing
CS reconstruction technique can be used without modifica-
tion to recover image data just like any other signal. That
said, improved reconstruction quality can result from intelli-
gent use of prior knowledge (statistical dependencies, struc-
ture, etc.) that one often has about the imagery at hand. As a
consequence, CS recovery techniques are being increasingly
tailored specifically to image data.

For example, a number of recent CS strategies (e.g., [1—-
4]) are deployed assuming that the image is both sampled and
reconstructed in the domain of a discrete wavelet transform
(DWT). Such wavelet-domain CS permits known statistical
models (e.g., [2,4]) for wavelet coefficients to be exploited
in reconstruction. Additionally, the degree of CS subsam-
pling can be adapted to the wavelet decomposition—often,
the baseband is retained in full with no subsampling (e.g.,
[1,3]), while the degree of subsampling is increased for suc-
cessively higher-resolution decomposition levels (e.g., [1]).

One of the primary challenges for CS on image data is
the large computational cost typically associated with CS re-
construction for multidimensional signals. One approach to
mitigating such computational burdens is to limit CS sam-
pling to relatively small blocks (e.g., [5, 6]). Reconstruction
schemes based on this block-based CS paradigm, such as the
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block CS with smoothed projected Landweber reconstruc-
tion (BCS-SPL) described in [6], provide very quick image
recovery in only a fraction of the time typically required for
techniques that feature full-image CS sampling. The draw-
back of block-based CS sampling is typically a reduced qual-
ity of image reconstruction due to the fact that CS sampling
generally works better the more global it is.

It this paper, we propose to ameliorate the reconstruction
quality of block-based CS while retaining its light computa-
tional burden and extremely fast execution. Specifically, we
propose a multiscale algorithm that deploys BCS-SPL [6] in
the domain of a wavelet transform. The resulting technique,
multiscale BCS-SPL (MS-BCS-SPL), is shown in experi-
mental results to provide a significant gain in reconstruction
quality over the original BCS-SPL while being only slightly
slower. Additionally, MS-BCS-SPL is observed to usually
outperform not only an alternative multiscale algorithm de-
scribed in [1] but also the popular total-variation (TV) recov-
ery [7] which is known for its high-quality reconstruction at
the cost of an extremely long runtime.

2. BACKGROUND

In brief, CS is a mathematical paradigm which permits, under
certain conditions, signals to be sampled at sub-Nyquist rates
via linear projection into a dimension much lower than that
of the original signal, yet which still allows exact recovery
of the signal from the samples. More specifically, suppose
that we want to recover real-valued signal x with length N
from M samples such that M < N. In other words, we want
to recover x from

ey

where y has length M, and A is an M x N measurement
matrix with subsampling rate, or subrate, being S = M/N.
Because the number of unknowns is much larger than the
number of observations, recovering every x € RV from its
corresponding y € R is impossible in general; however, if
x is sufficiently sparse in some domain, then exact recovery
of x is possible—this is the fundamental tenet of CS theory.

There are several issues that arise when the signal x is
an image. From the perspective of practical implementation,
the dimensionality of the sampling process in (1) grows very
quickly as the size of image x increases due to the multidi-
mensional nature of image data. This leads to a huge mem-
ory required to store the sampling operator when A is im-
plemented as a matrix within the CS sensing process. Ad-
ditionally, a large A yields a huge memory and computa-
tional burden within the CS reconstruction process. How-
ever, the use of structurally random matrices (SRMs) (e.g.,

y = Ax,



[8,9]) can significantly mitigate these issues. In essence, an
SRM provides a sampling process (operator A) consisting
of a random permutation, a simple and computationally effi-
cient transform (such as a block cosine or Hadamard trans-
form), and a random subsampling process, all of which can
be performed with little computation or memory.

As an alternative to SRMs for alleviating the huge com-
putation and memory burdens associated with the measure-
ment matrix A within both the sensing and reconstruction
processes, one can adopt a philosophy long used in image-
processing fields when an image is too large to be feasi-
bly processed in its entirety—namely, break the image into
smaller blocks and process the blocks independently. An ap-
proach for such block-based CS (BCS) for 2D images was
proposed in [5].

In BCS, an image is divided into B x B blocks and sam-
pled using an appropriately-sized measurement matrix. That
is, suppose that x; is a vector representing, in raster-scan
fashion, block j of input image x. The corresponding y;
is then

yj = Px;, 2
where ® is an Mg x B? measurement matrix such that the
subrate for the image as a whole is S = Mp/B?. It is straight-
forward to see that (2) applied block-by-block to an image
is equivalent to a whole-image measurement matrix A in (1)
with a constrained structure; specifically, A is constrained to
have a block-diagonal structure,

& 0 0
0 @ 0

A=, 3)
0 0 &

In [5], BCS was proposed wherein the sampling of an
image is driven by random matrices applied on a block-by-
block basis, while the reconstruction is a variant of the pro-
jected Landweber (PL) reconstruction! that incorporates a
smoothing operation intended to reduce blocking artifacts.
Since it combines BCS with a smoothed PL (SPL) recon-
struction, in [6], the overall technique was called BCS-SPL.

Ideally, the CS sampling operator should be “global” in
the sense that the entire signal x should contribute to each
and every measurement taken in producing y in (1). How-
ever, a block-diagonal structure as in (3) defeats such max-
imally holistic sampling. As a consequence, BCS-based
techniques such as BCS-SPL, while capable of exceedingly
fast reconstruction, can be at a disadvantage in terms of re-
construction quality due to their reliance on a block-based
sampling operator. In the next section, we propose a mod-
ification to the BCS-SPL algorithm designed to improve
its reconstruction-quality performance while maintaining its
block-based sampling and corresponding fast reconstruction.
Specifically, we deploy BCS-SPL within the wavelet domain
of the image x to provide multiscale sampling and recon-
struction.

'PL reconstruction, when incorporating hard thresholding for enforce-
ment of sparsity, is often known as iterative hard thresholding (IHT) within
the CS community (e.g., [10]).
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3. MS-BCS-SPL
3.1 Multiscale BCS

The sampling operator A for MS-BCS-SPL is split into two
components—a multiscale transform €2 (e.g., a DWT) and
a multiscale block-based measurement process ®’ such that
A = ®'Q, and (1) becomes

y = &' Ox. 4)
Assume that € produces L levels of wavelet decomposition;
thus, ®’ consists of L different block-based sampling oper-
ators, one for each level. That is, let the DWT of image x
be

X = Qx.

&)

Subband s at level / of X is then divided into B; X B; blocks
and sampled using an appropriately-sized ®; (note that/ =L
is the highest-resolution level). That is, suppose X, ; is a
vector representing, in raster-scan fashion, block j of sub-
band s at level [, with s € {H,V,D}, and 1 <[ < L. Then,

(6)

Since the different levels of wavelet decomposition have
different importance to the final image reconstruction qual-
ity, we adjust the sampling process so as to yield a different
subrate, S;, at each level /. In all cases, we set the subrate of
the DWT baseband to full sampling, i.e., So = 1. Then, we
let the subrate for level [ be

Yis,j = PrXis,j-

S =wS, @)
such that the overall subrate becomes
1 L3
— !
S=gzSo+ > s’ ®)
=1

Given a target subrate S and a set of level weights W, one
can easily solve (8) for S, yielding a set of level subrates
S; via (7). However, this process will typically produce one
or more S; > 1. Thus, we modify the solution to enforce
S; <1 for all [. Specifically, after finding S and S; via (8)
and (7), we check if §; > 1. If so, we set S| = 1, remove its
corresponding term from the sum in (8), and then solve

3

L

1 3
S=gzSot S+ s ©)
=2

for §’, again using (7) to redetermine S; forl =2,...,L. We
repeat this process as needed to ensure that all §; < 1.
For the experimental results to follow later, we use level
weights,
W, = 16Lfl+17 (10)

which we have found to perform well in practice. The result-
ing level subrates S; for various target subrates S for a DWT
with L = 3 levels are shown in Table 1.

3.2 Multiscale Reconstruction

The BCS-SPL reconstruction algorithm couples a full-image
Wiener-filter smoothing process with a sparsity-enhancing
thresholding process in the domain of some full-image spar-
sity transform W. Interleaved between the smoothing and



Table 1: Subrates S; at level / for target overall subrate S for
a DWT with L = 3 levels. In all cases, the baseband is given
full sampling (Sp = 1.0).

ST S [ S [ 8 |
0.1 || 1.0000 | 0.1600 | 0.0100
0.2 || 1.0000 | 0.5867 | 0.0367
0.3 || 1.0000 | 1.0000 | 0.0667
0.4 || 1.0000 | 1.0000 | 0.2000
0.5 || 1.0000 | 1.0000 | 0.3333

thresholding operations lie Landweber steps in the form of
x «— x+ ®! (y — ®x), where ® is some measurement ma-
trix. Fig. 1 illustrates how the BCS-SPL reconstruction is
modified to accommodate the situation in which CS sam-
pling takes place within a multiscale transform €2 as in (4). In
essence, the resulting MS-BCS-SPL reconstruction applies
a Landweber step on each block of each subband in each
decomposition level separately using the appropriate block-
based ®; for the current level /. As in the original BCS-SPL,
Wiener filtering takes place in the spatial domain of the im-
age, while some thresholding operator is applied in the do-
main of full-frame sparsity transform ¥ to promote sparsity.

4. RESULTS

We now evaluate the performance of the MS-BCS-SPL al-
gorithm described above on several grayscale images of size
512 x 512. We compare to the original BCS-SPL algorithm
[6] as well as to the TV reconstruction described in [7] and
a multiscale variant of GPSR as described in [1]. Both MS-
BCS-SPL and BCS-SPL use a dual-tree DWT (DDWT) [11]
as the sparsity transform ¥ with bivariate shrinkage [12] ap-
plied within the DDWT domain to enforce sparsity as de-
scribed in [6]. MS-BCS-SPL uses a 3-level DWT with the
popular 9/7 biorthogonal wavelets as the sampling-domain
transform 2. At decomposition level / of €2, blocks of size
B; x B; are individually sampled in the DWT domain us-
ing the scrambled block-DCT SRM sampling operator of
[8]; we use blocks of sizes B; = 16, 32, and 64 for decom-
position levels [ = 1, 2, and 3, respectively (I = 3 is the
highest-resolution level). On the other hand, BCS-SPL uses
B x B block-based sampling applied directly on the image in
its ambient domain; here, B = 32. TV uses the scrambled
block-Hadamard SRM of [9] to provide a fast whole-image
CS sampling. Finally, the multiscale GPSR (MS-GPSR) is
implemented similarly to MS-BCS-SPL—GPSR reconstruc-
tion is applied independently to each DWT level using the
same 2 as MS-BCS-SPL; subrates in the individual levels
follow Table 1 with sampling using a scrambled block-DCT
SRM applied to the entire DWT level. We use our imple-
mentation? of BCS-SPL and MS-BCS-SPL, #;-MAGIC? for
TV, and the GPSR implementation* from its authors.

The reconstruction performance of the various algo-
rithms under consideration is presented in Table 2. In most
cases, the wavelet-domain sampling and multiscale recon-
struction of MS-BCS-SPL provides a substantial gain in
reconstruction quality over the image-domain sampling of

Zhttp://www.ece.msstate.edu/~fowler/BCSSPL/
3http://www.acm.caltech.edu/l1lmagic/
http://www.lx.it.pt/-mt£/GPSR/
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function % = MS-BCS-SPL (y, {®;, 1</<.}, ¥, )
for each level |
for each subband s€{H,V,D}

for each block j

<0 _ FT )
Xisj— P Yis,

i=0

do
x() = - 1x0)
%) = Wiener(x()
%0 = Qx®

for each level [
for each subband s€{H,V,D}
for each block j

X0 =%+ @l (.- @)

ZJJZT S, j L,s,j
%0 = pO-1%0
%)) = Threshold (%)
%0 = Qw—1x0)

for each level [
for each subband s¢€ {H,V,D}
for each block j

2D = ig’fl + @ (v~ X))
pU+1) — Hi(i+1) 10 H2
i=i+1

until [P — pi=1| < 102
% =%

Figure 1: MS-BCS-SPL reconstruction of a 2D image;
Wiener(+) is pixel-wise adaptive Wiener filtering using a
neighborhood of 3 x 3, while Threshold(+) is a thresholding
process.

BCS-SPL, generally on the order of a 1- to 3-dB increase in
peak signal to noise ratio (PSNR). Additionally, MS-BCS-
SPL outperforms TV reconstruction in most instances de-
spite the fact that TV has the advantage of full-image sam-
pling; the gains of MS-BCS-SPL over TV are particularly
significant at the lowest subrates. MS-BCS-SPL also gener-
ally outperforms MS-GPSR even though the latter globally
samples each resolution level. The primary exception is the
Barbara image—although MS-BCS-SPL outperforms TV at
the lowest subrates, MS-GPSR is slightly better. However,
TV dominates the performance comparison for Barbara at
the higher subrates. Fig. 2 depicts typical reconstruction re-
sults for Lenna at a subrate of S =0.1.

As can be seen in Table 3, in terms of execution times, re-
construction with MS-BCS-SPL is only slightly slower than
BCS-SPL, each running for about half a minute on a dual-
core 2.8-GHz machine. On the other hand, the execution
times of both MS-GPSR and TV are some two orders of mag-
nitude longer, with TV requiring nearly two hours to recon-
struct a single image even with fast SRM implementation of
the sampling operator.

S. CONCLUSION

MS-BCS-SPL provides a multiscale variant of the original
BCS-SPL reconstruction by deploying block-based CS sam-



pling within the domain of a wavelet transform. The cor-
responding multiscale reconstruction applies the Landweber
step at the core of BCS-SPL to each block in each subband at
each decomposition level independently. The resulting MS-
BCS-SPL algorithm achieves a 1- to 3-dB gain in reconstruc-
tion PSNR over the original BCS-SPL that features sampling
and reconstruction in the original spatial domain of the im-
age. As a result, MS-BCS-SPL effectively retains the fast
execution speed associated with block-based CS while rival-
ing the quality of CS reconstructions such as TV that employ
full-image sampling.

The general advantages of block-based CS are a re-
duced computational complexity in reconstruction as well
as a greatly simplified sampling-operator implementation in
both the reconstruction as well as in the sampling process. A
multiscale BCS in the wavelet domain like we have proposed
here retains these advantages for reconstruction; however,
the decomposition of the measurement process as A = ®'Q
entails that the transform €2 wrecks the block-diagonal struc-
ture of ®’, producing a dense A that can be challenging to
implement within a CS sensing device. Thus, the improved
performance of MS-BCS-SPL reconstruction can be viewed
as arriving at the expense of a more complicated sampling
process within the sensing device.

REFERENCES

[1] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian
matching pursuit: Model uncertainty and parameter es-
timation for sparse linear models,” IEEE Transactions
on Signal Processing, 2008, submitted.

[2] L. He and L. Carin, “Exploiting structure in wavelet-
based bayesian compressive sensing,” IEEE Transac-
tions on Signal Processing, vol. 57, no. 9, pp. 3488—
3497, September 2009.

[3] B. Han, F. Wu, and D. Wu, “Image representation by
compressive sensing for visual sensor networks,” Jour-
nal of Visual Communication and Image Representa-
tion, vol. 21, no. 4, pp. 325-333, May 2010.

[4] Y. Kim, M. S. Nadar, and A. Bilgin, “Compressed sens-
ing using a Gaussian scale mixtures model in wavelet
domain,” in Proceedings of the International Confer-

ence on Image Processing, Hong Kong, September
2010, pp. 3365-3368.

[5] L. Gan, “Block compressed sensing of natural images,”
in Proceedings of the International Conference on Dig-
ital Signal Processing, Cardiff, UK, July 2007, pp.
403-406.

[6] S. Mun and J. E. Fowler, “Block compressed sensing
of images using directional transforms,” in Proceedings
of the International Conference on Image Processing,
Cairo, Egypt, November 2009, pp. 3021-3024.

[7] E. Candes, J. Romberg, and T. Tao, “Stable signal re-
covery from incomplete and inaccurate measurements,”’
Communications on Pure and Applied Mathematics,
vol. 59, no. 8, pp. 1207-1223, August 2006.

[8] T. T. Do, T. D. Tran, and L. Gan, “Fast compressive
sampling with structurally random matrices,” in Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Las Vegas, NV, March
2008, pp. 3369-3372.

567

Table 2: Reconstruction PSNR in dB

Subrate
Algorithm 0 T 02 ] 03 ] 04 ] 05
Lenna
MS-BCS-SPL | 31.55 | 34.67 | 36.67 | 37.90 | 39.01
BCS-SPL 28.01 | 31.55 | 33.69 | 35.37 | 36.88
TV 29.87 | 32.90 | 35.04 | 36.81 | 38.41
MS-GPSR 30.30 | 33.61 | 35.21 | 36.32 | 37.75
Barbara
MS-BCS-SPL | 23.82 | 25.08 | 26.05 | 27.36 | 28.84
BCS-SPL 22.40 | 23.77 | 25.38 | 27.01 | 28.66
TV 22.96 | 24.48 | 26.26 | 28.40 | 30.79
MS-GPSR 24.04 | 25.28 | 26.09 | 27.47 | 29.62
Peppers
MS-BCS-SPL | 31.05 | 34.20 | 35.69 | 36.75 | 37.68
BCS-SPL 28.98 | 32.08 | 33.84 | 35.21 | 36.44
TV 30.37 | 33.13 | 34.71 | 35.90 | 37.01
MS-GPSR 29.30 | 31.86 | 33.05 | 34.22 | 35.79
Mandrill
MS-BCS-SPL | 21.39 | 23.00 | 24.64 | 25.53 | 26.45
BCS-SPL 20.52 | 21.81 | 22.88 | 23.94 | 25.08
TV 20.51 | 22.02 | 23.44 | 2491 | 26.49
MS-GPSR 21.52 | 22.90 | 24.31 | 25.06 | 26.25
Goldhill
MS-BCS-SPL | 29.00 | 31.06 | 32.78 | 33.73 | 34.66
BCS-SPL 27.08 | 29.10 | 30.48 | 31.79 | 33.10
TV 27.53 | 29.86 | 31.64 | 33.20 | 34.84
MS-GPSR 28.45 | 30.44 | 32.16 | 32.95 | 34.10

Table 3: Reconstruction time for Lenna at subrate of 0.3

Algorithm Time (sec.)
BCS-SPL 30
MS-BCS-SPL 46
MS-GPSR 1,173
TV 6,584

[9] L. Gan, T. T. Do, and T. D. Tran, “Fast compressive
imaging using scrambled block Hadamard ensemble,”
in Proceedings of the European Signal Processing Con-
ference, Lausanne, Switzerland, August 2008.

[10] T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing,” Applied and Computa-
tional Harmonic Analysis, vol. 27, no. 3, pp. 265-274,
November 2009.

[11] N. G. Kingsbury, “Complex wavelets for shift invari-
ant analysis and filtering of signals,” Journal of Applied
Computational Harmonic Analysis, vol. 10, pp. 234—
253, May 2001.

[12] L. Sendur and I. W. Selesnick, “Bivariate shrinkage
functions for wavelet-based denoising exploiting inter-
scale dependency,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 11, pp. 2744-2756, November
2002.



(a) MS-BCS-SPL, 31.55dB (b) BCS-SPL, 28.01 dB

(c) TV, 29.87dB (d) MS-GPSR, 30.30dB

Figure 2: Reconstructions of the 512 x 512 Lenna image (shown in detail) for a subrate of S = 0.1.
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