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ABSTRACT 

This paper focuses on the convolutive blind source separa-
tion. Confronted by drawbacks of time-domain and fre-
quency-domain approaches, we propose a novel approach 
for source separation in subband-domain based on the pre-
emphasis processing of subband signals. A time-domain 
algorithm based on the entropy maximization principle, 
using the natural gradient algorithm for adaptation task, is 
employed for subband signal separation. Instead of signal 
whitening based on frame-by-frame linear prediction anal-
ysis, we propose a fixed, pre-determined signal whitening 
scheme in the subbands to improve the separation perfor-
mance while decreasing artifacts. With less computational 
complexity and side-effects, the proposed method is exper-
imentally evaluated and shown to be superior to several 
other subband-based approaches. 

1. INTRODUCTION 

Blind source separation (BSS) is a statistical signal pro-
cessing method which aims to extract source signals from 
their observed mixtures, assuming almost no a priori in-
formation about the characteristics of the sources or the 
mixing environment. The only assumption about the 
source signals is that they are statistically mutually inde-
pendent.  
       This paper focuses on the BSS of convolutive mixtures 
of speech signals. In literature, different methods have 
been proposed to tackle this problem. Most of the methods 
are based on the concept of independent component analy-
sis (ICA) [5].  
       Early BSS algorithms tried to solve the problem exclu-
sively in the time-domain. In realistic environments, one 
must adapt fairly long separating filters to adequately sepa-
rate the observed mixtures. Because of this, time-domain 
approaches converge very slowly, especially when dealing 
with colored signals. Moreover, many of these algorithms 
were originally developed to separate i.i.d signals. When 
applied to colored signals, these methods could not distin-
guish between time correlations and spatial correlations of 
the observed signals. As a result, recovered signals have 
flattened spectra compared to the source signals. Besides, 
these algorithms have extreme computational complexities. 

       Encountered with these obstacles, Smaragdis [14] pro-
posed to take the problem into the frequency-domain. 
Solving an instantaneous mixing problem in each frequen-
cy bin, the convergence rate increases considerably. More-
over, using the benefits of fast Fourier transform (FFT), 
computational complexity reduces greatly. Still, permuta-
tion and scaling problems exceedingly degrade the overall 
separation performance of these algorithms [14]. Besides, 
there are fundamental limitations on the separation ability 
of the frequency-domain algorithms [4]. 

To alleviate the problems of the time-domain and the 
frequency-domain algorithms, some researches proposed 
to tackle the BSS problem in the subband-domain [3, 7, 9, 
13]. By use of a reasonable number of subbands and sepa-
rating filters of appropriate length in each subband, the 
effects of long reverberations can be properly covered. 
Using shorter separating filters in subbands and whiter 
signals to adapt them, the convergence rate is increased 
considerably. Moreover, applying a time-domain BSS al-
gorithm in each subband, the permutation problem is 
avoided within subbands. Although the permutation prob-
lem might occur between subbands, due to the existence of 
more information in each subband compared to the fre-
quency-domain algorithms, it is much easier to mitigate 
the permutation problem [3]. Since the subbands often 
heavily overlap in the frequency-domain, likelihood of 
permutation problem between subbands greatly decreases. 
Our extended experiments with subband-based BSS algo-
rithms also confirm this.  Moreover, whiter signals are 
used in subband-based methods to adapt separating filters, 
and the whitening artifact of the time-domain algorithms 
arises independently in each subband. Thus, the whitening 
distortion yields less overall artifacts in the recovered sig-
nals [3].  
       Motivated by the approach in [9], in this paper, we 
propose a new method for BSS in the subband-domain. In 
the approach of [9], linear prediction residuals of the sub-
band signals are used to adapt the separating filters of each 
subband. After convergence, the adapted filters of each 
subband are applied to the original subband signals for 
separation. Inspired by this research, we propose a novel 
approach based on the pre-emphasis and de-emphasis pro-
cessing of the subband signals. In contrast to the method of 
[9], in which block-by-block linear prediction analysis is 
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used to estimate the whitening filters of each subband sig-
nal, we use a single pre-determined pre-emphasis filter to 
remove the spectral tilt of the subband signals to make 
them whiter. Then, the whitened mixtures in each subband 
adapt the separating filters of that subband. After conver-
gence, the adapted filters are applied to the whitened mix-
tures to extract the pre-emphasised separated outputs. Fi-
nally, using a single pre-determined de-emphasis filter, the 
colors of separated signals are recovered. Additionally, in 
contrast to the most of the earlier approaches for subband 
BSS, in which the single sideband (SSB) modulated fil-
terbanks decompose the observed mixtures, we use gener-
alized discrete Fourier transform (GDFT) filterbanks. Our 
experiments verify that using the proposed approach, supe-
rior performance, in terms of separation quality and con-
vergence rate can be achieved. 

2. BSS OF CONVOLUTIVE MIXTURES 

In a realistic scenario, Ns unobserved source signals (with 
discrete time index of t), s(t)=[s1(t),…,sNs(t)]

T, are travelled 
through an unknown environment and mixtures of them 
are received to Nm sensors. The observed mixtures can be 
described as 

M-1

k=0

(t) = (k) (t k), t = 0,1 ,...x H s  (1) 

where x(t)=[x1(t),…,xNm(t)]T  is the vector of observed 
mixtures and H is the matrix of mixing filters of length M.  
       BSS aims to adapt a system, W, consisting of separat-
ing filters of length T, so that its outputs be as independent 
as possible. The separated outputs can be modelled as 

T-1

k=0

(t) = (k) (t k), t = 0,1,...y W x  (2) 

where y(t)=[y1(t),…,yNs(t)]
T  is the vector of recovered 

signals. The task of BSS is to adapt the separating system 
W, such that the global system, G, be of the form 

(z) = (z) (z) = (z)G H W PD  (3) 

in which P is a permutation matrix and D(z) is a diagonal 
matrix of arbitrary filters.  

3. SUBBAND BSS 

Subband-domain BSS consists of three distinct stages, 
ordered as: subband analysis, subband separation, and sub-
band synthesis. The following subsections describe these 
stages, respectively. 

3.1   Subband analysis stage 

In the first stage, all observed mixtures must be decom-
posed over multiple subbands [6]. This may be done using 
GDFT filterbanks [13] or SSB filterbanks [3, 7, 9]. In most 
of the previous subband approaches, the SSB filterbanks 
are used. In this way, the subband signals are real-valued 
and one can employ any of the previously proposed time-
domain BSS algorithms in each subband, without extend-
ing them to deal with complex valued signals. In this pa-

per, we use a GDFT filterbank. The benefit is that the 
phases of the subband signals are not dropped, which leads 
to more accurate filter adaptation as shown in our experi-
ments. In the analysis stage, each observed mixture, xj(t), 

is decomposed into N subband signals, 
G D FT

jX (κ ,m )
, 

where κ = 0,…N-1 is the subband index and m is the time 
index of the subband signals, related to the full-band time 
index as m=Rt, where R is the decimation rate of the fil-
terbank. One can choose any value for R such that R≤N. 
The prototype low-pass analysis window is of the form 

a

t
h (t) = N sinc win(t), t = 0,..., 4N -1

N

 
 
 

 (4) 

in which win(t) is a L=4N taps Hamming window. The 
oversampling (OS) ratio of the GDFT filterbanks is de-
fined as 

N
OS =

R
.  (5) 

 Using oversampled filterbanks (OS>1), aliasing distortion 
can be avoided [6] and BSS can be performed in different 
subbands independently [16]. Besides, as each subband 
signal has an approximate bandwidth of π/OS, it is much 
whiter than the full-band signals. This reduces the whiten-
ing artifact of the time-domain BSS algorithm which is 
used in the separation stage. 

3.2   Time-domain BSS in subbands stage 

Generally, the decimation rate of filterbanks is much 
smaller than the length of mixing and demixing filters, 
R<< {M, T}. So, unlike the frequency-domain approaches, 
the subband mixtures ought to be considered as convolu-
tive mixtures. Due to decimation by R, it is sufficient to 
adapt filters of length T/R in each subband. 
       Based on the entropy maximization principle, a natural 
gradient algorithm was derived by Amari et al [2] for sepa-
ration of instantaneous mixtures. Employing the isomor-
phism between scalar and FIR polynomial matrices [11], 
the algorithm could be generalized for separation of convo-
lutive mixtures [12]. This generalized time-domain algo-
rithm adapts separating filters of κ-th subband, W(κ), based 
on 

(κ) (κ) (κ)
l+1 l l= +μ(κ)Δ ,W W W    

  
(6) 

   H
(κ) (κ)(κ) (κ)

l ll lΔ = -FFT ,
 
 
 

W I φ u u W 

 

 
(7) 

(κ) (κ) (κ)
l l= ,u W x   

 
(8) 

in which l is the iteration index, µ(κ) is the step size in κ-th 

subband, (.)H is the Hermitian operator, and 
(.)   represents 

a variable in the frequency-domain. x(κ) and 
(κ)
lu  are the 

vectors of observed mixtures and separated outputs, re-
spectively. I is the unit FIR polynomial matrix which its  
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Figure 1 – Spectral magnitudes of a subband signal, pre-emphasis 
filter and pre-emphasised subband signal 

main diagonal elements are sequences of ones, all of length 
T, and its other elements are sequences of zeros. Moreover,  
φ(u)=[φ1(u1),…, φNs(uNs)]

T is the vector of nonlinear acti-
vation function, which acts on the time-domain signals. 
The optimal form of φ (.) is defined as [17]   

 i
p (u )u iiφ (u ) = log ,i iu



  

  
(9) 

where pu(u) is the pdf of the sequence u. The pdf of speech 
signals can be properly approximated by the generalized 
Gaussian distributions (GGD). So, the activation function 
is defined as [17] 

α-1
uφ (u)=sign(u) u  (10) 

in which α is the Gaussian exponent of GGD distributions. 
Note that although the adaptation algorithm (6)-(8) oper-
ates in the frequency-domain to benefit from the ad-
vantages of FFT, as φ(.) exclusively acts on the time-
domain sequences, the permutation problem is avoided 
within subbands.  
      Similar to most of the time-domain BSS approaches, 
the algorithm (6)-(8) causes whitening distortion in the 
recovered signals. Several approaches were proposed to 
tackle this problem, e.g. [10]. In [10], a so called LP-NGA 
approach is proposed, in which, linear prediction analysis 
is used to extract the residuals of the observed mixtures. 
These residuals have flat spectra and are used to adapt sep-
arating filters. Reaching to a convergence point, the 
adapted filters are applied to the original mixtures to pro-
duce the recovered signals. Note that in the subband analy-
sis stage, a narrow sector, approximately of bandwidth 
π/N, of the spectrum of each observed mixture is decimat-
ed and extended to an approximate bandwidth of π/OS. So, 
in the subband BSS algorithms, especially for  small  val-
ues  of  OS,  the  adaptation signals are nearly white. Con-
sequently, with respect to the full-band algorithms, the 
whitening distortion has less adverse effect on the recov-
ered subband signals. However, in order to perform filter 
adaptation in different subbands, independently, and to 
prevent the aliasing distortion, the filterbank should be 
sufficiently oversampled [16]. As a result, the coloration of 
the subband signals increases and the whitening effect may  
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Figure 2 – Configuration of the proposed BSS method

become considerable. To tackle this dilemma, the LP-NGA 
algorithm was incorporated into the subband BSS frame- 
work [9]. Our proposed solution to this problem is much 
simpler and more efficient. The method is based on the 
pre/de-emphasis processing of the subband signals. Our 
motivation comes from the success of the pre-emphasis 
method for increasing the convergence rate of the subband 
adaptive filtering   [1].   
       Note that the subband signals are colored, but the color 
of them is quite known and is determined by the prototype 
analysis filter. Specifically, as in subband analysis stage, 
the observed mixtures are decomposed to subband signals 
using ha(t) and its modulated versions, the spectral tilt of 
all subband signals is fairly analogous to the spectrum of 
ha(t), as depicted in Figure 1. Accordingly, we propose to 
remove the spectral tilt of all subband signals and whiten 
them, using a single, pre-determined pre-emphasis filter, 
hpre. The spectrum of a three-tap IIR pre-emphasis filter 
and the spectral shape of a pre-emphasised subband signal 
are depicted in Figure 1, as well. The pre-emphasised sig-
nals in each subband κ, are used as the input to the algo-
rithm (6)-(8). After convergence, employing the adapted 
system, W(κ), on the pre-emphasised signals of the κ-th 
subband, the pre-emphasised separated signals of the sub-
band are estimated. As denoted in Eq.8, these outputs are 
in the frequency-domain. We convert these outputs back to 
the time-domain using the overlap-save method. Finally, 
using the inverse of hpre as de-emphasis filter in each sub-
band, the color of separated outputs is recovered. The 
block diagram of the proposed BSS method is depicted in 
Figure 2. Note that in contrast to the method of [9], in 
which for each block of each subband, linear prediction 
coefficients should be estimated and used as the whitening 
filter of that block, in the proposed method only a single 
pre-determined filter is employed as the whitening filter 
for all subband signals. In this way, in addition to the re-
duced computational complexity, the problems associated 
with linear prediction analysis in speech processing appli-
cations are prevented. In [7], we proposed to incorporate a 
similar BSS algorithm into the SSB filterbanks. In that 
work, however, the subband signals were real-valued and 
the spectra of the adapting signals were centered around 
π/2. Also, an activation function different from the one in 
Eq.10 was employed. Our experiments demonstrate the 
advantage of the proposed method in this paper over the 
method of [7]. 

3.3   Subband synthesis stage   

In the last stage, the separated signals in different subbands 
are combined together via a GDFT synthesis filterbank [6] 
to form the separated signals in the time-domain. To main-
tain the linear phase property in the subband processing, a 
time reversed version of ha(t) can be used as the prototype 
synthesis window, hs(t),[15] 
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Figure 3 – SIRI values of the four methods in the first experiment

 

s ah (t)= h (L- t -1), t =0,...,4N-1 (11) 

4. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed method in 
separation of convolutive mixtures of speech is examined. 
The standard case of Ns=Nm=2 is considered. The separa-
tion ability of BSS algorithms is measured via signal to 
interference ratio improvement (SIRI). This measure is 
defined as [3]  
 

i Oi Ii sSIRI =SIR -SIR ,i =1,...,N      (12) 

Oi

2y (t)t i ,si
SIR =10 log [dB],

2

( )t ,
y tj i i s j

 
 
 

  
 
  
      
   

  (13) 

Ii

2x (t)t i ,s
SIR =10 log [dB],

2

x ( )
,

i

tt j i i s j

 
 
 
  
 
  
      
   

 (14) 

 
where xi,sj and yi,sj specify the contributions of sj into xi and 
yi, respectively. SIRI determines the ability of BSS algo-
rithm in removing interference and recovering target 
sources. In order to calculate the SIRI values, the contribu-
tions of each source to each of the sensors and outputs 
should be determined. The contributions of each source 
can be calculated by activating that source while the other 
sources are de-activated. 
       We compare the performances of four subband BSS 
methods: 1) using SSB filterbank without pre/de-
emphasising (method SN); 2) using SSB filterbank and 
pre/de-emphasising (SP) [7]; 3) using GDFT filterbank  

Figure 4 – SIRI values of the four methods in the second 
experiment 

without pre/de-emphasising (GN); 4) using GDFT fil-
terbank and pre/de-emphasising (GP) . All of these algorit- 
hms outperform the purely time-domain algorithm, in 
terms of separation performance, convergence rate and 
spectral conservation.  For all algorithms, we choose 
N=128 and OS=2. Note that for SSB filterbanks, unlike 
Eq.5, OS=N/2R. For algorithms in which SSB filterbank is 
used, we choose α =1 [7]. Otherwise, for GDFT filterbank-
based algorithms α = 0.6 is chosen. These selections are 
adjusted for the optimal separation performance through 
experimentation. The four algorithms are examined in two 
sets of experiments. In the first, two zero-mean speech 
signals, one of a male and another of a female speaker, 
sampled at 8-kHz and normalized to their maximum ampli-
tude, are used as the source signals. These sources are 
mixed by use of a mixing system related to a dummy head. 
Assuming that sources are at angles 30o and -40o with re-
spect to the perpendicular bisector of the microphone array, 
the MATLAB code “headmix.mat” [18] is used to simulate 
the mixing system. The observed mixtures (obtained by 
filtering the sources via simulated mixing system), have 
SIR values of 5.5 dB and 2.07 dB. We use separating filters 
of length 16-taps in each subband. This is equivalent to 
16×128 = 2048 filter taps in the time-domain. In Figure 3, 
the SIRI values, averaged over two channels, are depicted 
versus the number of iterations for the algorithms. In all 
experiments, the step size, µ, is tuned for optimum separa-
tion performance. As can be deduced from this figure, the 
methods based on the GDFT filterbank, with or without 
whitening, are more efficient than those using SSB fil-
terbank, in terms of separation performance. As depicted in 
the figure, methods GN and GP outperform the SSB-based 
approaches by about 5.5 and 7 dB, respectively. Although 
the method SP converges faster than the method GN, using 
the proposed whitening scheme, the convergence rate of 
the GDFT-based approach (GP) can be increased to reach 
to the rate of method SP. 
       In the second experiment, a substantially more chal-
lenging separation task is considered, in which, a speech 
signal of a female is mixed with babble noise in a chamber, 
while the sources are at the angles 20o and 60o with respect 
to the perpendicular bisector of the microphone array. 
Since in this configuration the mixing system is non-
minimum phase, the separation task is known to be very  
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 First experiment Second experiment 

SIRI1 
[dB] 

SIRI2 
[dB] 

No. of 
iterations 

 

SIRI1 
[dB] 

SIRI2 
[dB] 

No. of 
iterations 

TD 14.6 5.4 44 5.5 12.8 43 

SN 19 27.5 35 4.5 12.4 35 

SP 19.8 28.3 24 22.1 11.5 25 

GN 27 30.2 40 10 24.8 21 

GP 26.9 34.9 26 28.3 12.5 14 
 

Table 1 –  Comparison of simulated methods with respect to 
SIRI and convergence speed 

hard [8]. Signals are sampled at 16 kHz and are normalized 
to have a magnitude of one. Input SIRs are equal to 1.23 
dB and 2.45 dB. We utilize separating filters of length 32 
in each subband, equal to 32×128 = 4096 filter taps in the 
time-domain. Other parameters are set as the first experi-
ment. Average of SIRI values versus the number of itera-
tions are depicted in Figure 4. As can be seen from this 
figure, the methods SP and GN have almost similar separa-
tion performances and both outperform the method SN by 
about 9 dB. In this case, the GDFT-based approaches con-
verge almost twice faster than the SSB-based approaches. 
Moreover, the proposed whitening scheme increases the 
separation performance by about 3.5 dB, with respect to 
the methods SP and GN. These results confirm the superi-
ority of the GDFT filterbank over the SSB filterbank in 
subband BSS applications. Moreover, the proposed whit-
ening further improves the performance. Our documented 
results reveal the ability of the proposed method to pre-
serve the spectral shape of the recovered signals. It is 
worth pointing out that based on our extensive experiments 
none of the implemented subband-domain algorithms suf-
fers from the permutation ambiguity, as expected due to 
the subband frequency-band overlaps. Table 1 summarizes 
the performances of all the implemented subband and 
time-domain (TD in Table 1) algorithms in terms of SIRI 
and the required number of iterations for convergence. 

5. CONCLUSIONS 

Subband BSS was considered in this paper. A brief review 
of advantages and disadvantages of different BSS ap-
proaches was presented. Using a GDFT filterbank and pre-
emphasis processing of the subband signals via a single 
pre-determined filter, a time-domain BSS algorithm was 
improved. The proposal was motivated by the advantages 
of pre-emphasis processing in subband adaptive filtering 
and drawbacks of time-domain and frequency-domain al-
gorithms. Our experiments reveal the superiority of the 
proposed method in terms of separation performance, con-
vergence rate and spectral preservation. 
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