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ABSTRACT
We present in this paper a multiple linear regression scheme
in the L1-norm which operates on the array output covariance
matrix. The proposed method rectifies the covariance matrix
by exploiting the structural properties resulting from the ar-
ray geometry. In the case of a defective sensor, it is able to
fully restore the covariance which would be observed if all
sensors were working correctly. Simulations in Direction Of
Arrival estimation with a uniform circular array demonstrate
the interest of this L1 approach compared to conventional L2
techniques.

1. INTRODUCTION

Most array processing methods are based on the array output
covariance matrix: one can cite Direction Of Arrival (DOA)
estimation techniques and adaptive detection schemes such
as the Adaptive Matched Filter. Performance of these meth-
ods depend on the quality of the covariance estimate: they
may be heavily impacted by estimation noise or by a fail-
ing sensor. A simple way for improving the covariance ma-
trix estimate is to exploit its structural properties. In array
processing with M sensors, the M×M covariance matrix ΓΓΓ

belongs to the M2-dimensional vector space (over R) of com-
plex Hermitian matrices. However, in the case of a Uniform
Linear Array (ULA), ΓΓΓ has a Toeplitz structure and lies in a
vector subspace of much smaller dimension than M2, namely
a L = 2M − 1-dimensional subspace (over R). As shown
in [4], this property of ULA’s is shared by other array ge-
ometries for an appropriate value of L: this is the case, for
instance, for circular arrays. In this framework, when using
noisy data, a multiple linear regression over the covariance
matrix entries may improve drastically the covariance matrix
estimate. Regression in the L2-norm leads to a conventional
rectification procedure which simply amounts, in the ULA
case, to averaging the covariance matrix elements along each
diagonal. This approach, which was extended to arrays of
arbitrary geometry in [4], allows to reduce estimation noise.
However, regression in the L2-norm is well known to be non-
robust to outliers: such outliers among the covariance matrix
entries are produced by a failing sensor which generates a
whole line and a whole column of wrong values. A well-
known robust alternative to regression in the L2-norm is of-
fered by regression in the L1-norm, and we show in this paper
that regression in the L1-norm applied to the array covariance
matrix allows to fix a possible defective sensor in the case of
a circular array.

As a very simple illustration in the ULA case, let us con-
sider a M = 7 sensors ULA with ideal covariance matrix:

ΓΓΓ = TTT (1,2,3,4,5,6,7), (1)

where TTT (a1,a2, . . . ,aM) is the Hermitian Toeplitz matrix
whose first column is a1,a2, . . . ,aM . Assume that the third

sensor is defective so that the resulting covariance matrix ΓΓΓd
at the array output differs from ΓΓΓ: instead of the nominal
value (3,2,1,2,3,4,5), the third line and the third column
are (0,0,0.1,0,0,0,0) where 0.1 is the noise power at the
output of the defective sensor. Regression in the L2-norm of
ΓΓΓd in the space of Toeplitz matrices leads to:

Γ̃ΓΓd,L2 = TTT (0.87,1.33,1.8,3,3.33,6,7) 6= ΓΓΓ, (2)

while regression in the L1-norm restores the ideal covari-
ance:

Γ̃ΓΓd,L1 = ΓΓΓ (3)

This error correcting capability of L1-regression is somewhat
limited in the ULA case: it works only if the non-defective
entries are in the majority along each diagonal, and is there-
fore not fully effective when the failing sensor is close to the
ends. These restrictions do not hold anymore in the case of
circular arrays, as will be seen on simulations: for an infi-
nite number of snapshots, the L1-norm is fully able to restore
the ideal covariance whatever the failing sensor. In the case
of a finite number of snapshots and a defective sensor, L1-
regression of the estimated array covariance matrix still out-
performs L2-regression: the MUSIC algorithm applied to the
resulting covariance matrix yields the same DOA estimates
as if all sensors were running properly.

The paper is organized as follows: section 2 recalls multi-
ple linear regression in the L1 norm, section 3 presents its ap-
plication to generalized rectification in array processing and
section 4 shows the simulation results. The following con-
vention is adopted: italic indicates a scalar quantity, lower
case boldface indicates a vector quantity and upper case bold-
face a matrix. T denotes the transpose operator and H the
transpose conjugate. IN is the N-th order identity matrix,
|| ||F is the Froebenius norm and E() is the expectation value
operator.

2. MULTIPLE LINEAR REGRESSION IN THE L1
NORM

Let y,yε ∈ RN be two real vectors where yε is assumed to
belong to a subspace ε of dimension L. These two vectors
are assumed to be linked by the following relation:

y = yε + e (4)

where e ∈ RN is an error vector due to noise, mis-modeling,
calibration errors, . . .. Our purpose is to find an estimate in
the L1-norm of yε , denoted ỹ, which belongs to the subspace
ε . Let {ui; i ∈ [[1;L]]} be a basis of ε , and λ̃1, λ̃2, . . . , λ̃L the
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components of ỹ in this basis:

λ̃1, λ̃2, . . . , λ̃L = Argmin
λ1,λ2,...,λL

(∣∣∣∣∣
∣∣∣∣∣y− L

∑
i=1

λiui

∣∣∣∣∣
∣∣∣∣∣
1

)
(5)

= Argmin
λ1,λ2,...,λL

(
N

∑
t=1

∣∣∣∣∣yt −
L

∑
i=1

λiui,t

∣∣∣∣∣
)

(6)

where yt and ui,t are respectively the t-th components of y
and ui.

It is well known that multiple regression in L1-norm is
readily solved by linear programming techniques [2]. In-
deed, problem (6) may be rewritten as:

Minimize
N

∑
t=1

vt , (7)

subject to:

−vt 6 yt −
L

∑
i=1

λiui,t 6 vt ∀t ∈ [[1;N]]

This is a linear program with an appropriate variable z,
and there exists very fast algorithms for solving it [1, 6]:

Minimize
z

cT z (8)

subject to:
Az≤ b

with: 

z = (λ1 ... λL v1 ... vN)
c = (0 ... 0︸ ︷︷ ︸ 1 ... 1︸ ︷︷ ︸ )T

L N

A =

(
U −IN
−U −IN

)
U = (u1 ... uL)
b = (y1 ... yN − y1 ... − yN)

(9)

A well known property of linear regression in the L1
norm is that the solution ỹ shares L components with y [7].
This explains the error-correcting capabilities of regression
by the L1-norm [3]: the solution ỹ is equal to yε when the er-
ror vector e in Eq. (4) has a small number of non zero values.
This also explains its robustness against outliers compared to
classical regression in the L2-norm [5].

We exploit these properties in an array processing context
to elaborate a covariance matrix estimate robust to a defective
sensor.

3. APPLICATION TO ARRAY PROCESSING

Let us consider an array of M sensors which receives the
signals emitted by P zero-mean uncorrelated sources. Let
a(θ) be the normalized steering vector where θ is the source
DOA. The k-th snapshot impinging the array, denoted by
x(k) ∈ CM , is given by:

x(k) =
P

∑
p=1

sp(k)a(θp)+b(k) ∀k ∈ [[1;K]] (10)

where sp(k) is the p-th source signal, b(k) ∈CM denotes the
complex noise vector and K is the total number of snapshots.

Let

ΓΓΓ = E
(
x(k)x(k)H

)
=

P
∑

p=1
γpa(θp)aH(θp)+ γnIM

(11)

be the ideal covariance matrix where γp and γn are respec-
tively the p-th source and the noise powers. Applying array
processing algorithms to this ideal covariance matrix leads
to optimal results. Unfortunately, ΓΓΓ is generally unknown
and we have to use a degraded version Γ̆ΓΓ. In this paper, we
consider that this degradation may have two origins:
1. an estimation error due to a finite number of snapshots;
2. a mis-modeling due to a defective sensor which delivers

only noise at its output.
In this context, array processing algorithms may perform

poorly. Therefore, we propose to elaborate a robust covari-
ance matrix estimator dealing with both degradations by us-
ing a rectification approach in the L1-norm.

The principle of matrix rectification is to improve the es-
timation quality of Γ̆ΓΓ by exploiting structural properties of ΓΓΓ

which result from the array symmetries (as for the ULA and
the uniform circular array). More precisely, it was shown
in [4] that ΓΓΓ generally belongs to a low L-dimensional sub-
space ε . The rectification process consists in constraining Γ̆ΓΓ

to belong to this subspace ε . This rectification was devel-
oped in the L2-norm in [4] and we propose in this paper to
extend this method to the L1-norm for a better robustness to
a defective sensor. The resulting rectified matrix is denoted
by ˜̆

ΓΓΓ.

3.1 Determination of a basis of ε

The rectification process first requires the determination of
the subspace dimension L as well as a basis of ε . These steps
are briefly described below and we refer to [4] for more de-
tails and in particular for the choice of L.

Let Θ of cardinal I be a dense sampling of all possible
DOA’s. Let d(θi) ∈ R2M2

, θi ∈Θ:

d(θi) = vec
(

a(θi)aH(θi)−
IM

M

)
(12)

where vec(.) operates on a complex matrix of dimension M to
provide a real vector containing the real and imaginary com-
ponents in an arbitrary order. The unvec(.) operation is de-
fined such that unvec(vec(H)) =H. Now, let R ∈R2M2×2M2

be the matrix defined by:

R =
I

∑
i=1

d(θi)dT (θi) (13)

R has 2M2 eigenvalues and eigenvectors but only L− 1
eigenvalues are significant. Let u1, ...,uL−1 be the L− 1
eigenvectors of R associated to the L−1 greatest eigenvalues
of R. The set of L hermitian’s matrices in CM×M Ui = unvec(ui), i ∈ [[1;L−1]]

UL =
IM√

M
(14)

is an orthonormal basis of ε [4].
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3.2 Rectification in the L1-norm

The rectified matrix ˜̆
ΓΓΓ of Γ̆ΓΓ is determined by estimating its

coordinates {λ̃i; i ∈ [[1;L]]} in ε . This problem is addressed
by a multiple linear regression in the L1-norm as presented in
section 2. This reduces to solve the linear program of Eq. (8)
with the following correspondences:

N = 2M2

y = vec(Γ̆ΓΓ)
yε = vec(ΓΓΓ)
ui = vec(Ui)

ỹ = vec( ˜̆
ΓΓΓ)

(15)

The resulting rectified matrix is given by:

˜̆
ΓΓΓL1 =

L

∑
i=1

λ̃iUi (16)

3.3 Discussion

By using the L2-norm instead of the proposed L1-norm, we
are also able to obtain a rectified matrix ˜̆

ΓΓΓL2 as presented
in [4]. In the ideal case (i.e. with an infinity of samples),
by considering the properties of regression in the L1-norm
presented at the end of section 2, Γ̃ΓΓL1 will be close to the
ideal one even if the array has a defective sensor while Γ̃ΓΓL2
will be strongly degraded by the defective sensor. In practical
cases (i.e. with a limited number of samples) with a defective
sensor, the estimated rectified covariance matrix ˜̆

ΓΓΓL1 will be
close to the one obtained without the defective sensor while
˜̆
ΓΓΓL2 will be still degraded.

4. SIMULATIONS

4.1 Simulations setting

In this section, we consider a uniform circular array com-
posed of M = 10 isotropic sensors with a radius r = 0.7λ

(λ is the wavelength of the transmitted signal). We assume
P = 2 zero-mean uncorrelated gaussian far-field sources
located at −10◦ and 10◦. The dimension L of the subspace ε

was determined in [4] and is equal to 21. Finally, the noise
is assumed to be zero-mean complex gaussian and the signal
to noise ratio is 10 dB.

Several degraded covariance matrices are considered:

• ΓΓΓd =
P
∑

p=1
γpad(θp)aH

d (θp)+γnIM where ad(θ) is equal to

a(θ) except for the defective sensor component which is
0. ΓΓΓd is thus the array covariance matrix with a defective
sensor;

• Γ̂ΓΓ=
1
K

K
∑

k=1
x(k)xH(k) is the usual Sample Covariance Ma-

trix (SCM) based on K snapshots without defective sen-
sor;

• Γ̂ΓΓd =
1
K

K
∑

k=1
xd(k)xH

d (k) is the SCM with a defective sen-

sor based on K snapshots xd(k) = ∑
P
p=1 sp(k)ad(θp) +

b(k).

By using the method previously described in section 3, these
three matrices are rectified yielding Γ̃ΓΓd,L1 , ˜̂

ΓΓΓL1 and ˜̂
ΓΓΓd,L1 .

We will compare rectification in the L1-norm as proposed
in this paper with the conventional one performed in the L2-
norm [4].

4.2 Results with ΓΓΓd

In this subsection, we consider the ideal case (i.e. with an
infinity of sample) in order to evaluate easily the contribution
of the L1-norm in the rectification process when a defective
sensor is present.

The first simulation checks that the rectification pro-
cesses in L1-norm and L2-norm yield close results with-
out defective sensor. The MUSIC algorithm based on Γ̃ΓΓL1

and Γ̃ΓΓL2 is used to estimate the sources DOA. The MUSIC
pseudo-spectra resulting from Γ̃ΓΓL1 and Γ̃ΓΓL2 are plotted in
Fig. 1: they are very similar and peaks are close to infinity as
expected.

Figure 1: MUSIC pseudo-spectra for Γ̃ΓΓL1 (blue star) and Γ̃ΓΓL2
(red square).

In the second simulation, we are interested in the be-
haviour of both rectification schemes in front of a defective
sensor. The MUSIC algorithm based on ΓΓΓd (with defective
sensor and without rectification), Γ̃ΓΓd,L2 (with defective sensor
and with rectification in L2-norm) and Γ̃ΓΓd,L1 (with defective
sensor and with rectification in L1-norm) is also used to esti-
mate the sources DOA. The MUSIC pseudo-spectra resulting
from ΓΓΓd , Γ̃ΓΓd,L2 and Γ̃ΓΓd,L1 are plotted in Fig. 2. As a reference,
we also plot the MUSIC pseudo-spectrum obtained with Γ̃ΓΓL1 .
With a defective sensor, we notice that the peak height is
strongly reduced to 0 dB without rectification. If ΓΓΓd is rec-
tified in the L2-norm, the peaks go up to 10 dB and become
more distinct. Finally, if ΓΓΓd is rectified in the L1-norm, both
peaks are very close to those obtained without defective sen-
sor. This illustrates that rectification in the L1-norm allows to
correct the defective sensor and to obtain almost ideal results
when using an infinite number of snapshots.
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Figure 2: MUSIC pseudo-spectra for Γ̃ΓΓL1 (top left), ΓΓΓd (top
right), Γ̃ΓΓd,L2 (bottom left) and Γ̃ΓΓd,L1 (bottom right). One sen-
sor is defective for ΓΓΓd , Γ̃ΓΓd,L1 and Γ̃ΓΓd,L2 .

4.3 Results with Γ̂ΓΓ and Γ̂ΓΓd

Results with MUSIC

In this subsection, we consider the more realistic case where
the number K of snapshots is finite. In all simulations, K
is set to 200 for estimating Γ̂ΓΓ and Γ̂ΓΓd . The MUSIC algo-
rithm based on the SCM Γ̂ΓΓ without defective sensor, the L2-
rectified SCM ˜̂

ΓΓΓL2 without defective sensor, the L1-rectified
SCM ˜̂

ΓΓΓL1 without defective sensor,the SCM Γ̂ΓΓd with defec-
tive sensor, the L2-rectified SCM ˜̂

ΓΓΓd,L2 with defective sensor

and the L1-rectified SCM ˜̂
ΓΓΓd,L1 with defective sensor, is used

to estimate the sources DOA. The MUSIC pseudo-spectra re-
sulting from Γ̂ΓΓ, ˜̂

ΓΓΓL2 , ˜̂
ΓΓΓL1 , Γ̂ΓΓd , ˜̂

ΓΓΓd,L2 and ˜̂
ΓΓΓd,L1 are plotted in

Fig. 3. For each case, we have considered 100 trials.

Plots are organized as follows: the left (resp. right) col-
umn refers to results obtained without (resp. with) defective
sensor. Plots are obtained on the first line with the SCM’s
(Γ̂ΓΓ and Γ̂ΓΓd), on the second line with the L2-rectified SCM’s
( ˜̂
ΓΓΓL2 and ˜̂

ΓΓΓd,L2 ) and on the third line with L1-rectified SCM’s

( ˜̂
ΓΓΓL1 and ˜̂

ΓΓΓd,L1 ). Without defective sensor, we notice that the
rectification process (in L1 or L2 norms) improves DOA es-
timation (a gain of 5 dB can be observed). With a defective
sensor, only the L1-rectification is able to provide a similar
result as without defective sensor. This confirms the results
previously obtained with an infinite of snapshots.

Figure 3: MUSIC pseudo-spectra for Γ̂ΓΓ (top left), ˜̂
ΓΓΓL2 (mid-

dle left), ˜̂
ΓΓΓL1 (bottom left), Γ̂ΓΓd (top right), ˜̂

ΓΓΓd,L2 (middle

right) and ˜̂
ΓΓΓd,L1 (bottom right). One sensor is defective for

Γ̂ΓΓd , ˜̂
ΓΓΓd,L1 and ˜̂

ΓΓΓd,L2 .

Mean Square Errors
In this paragraph, we give the normalized Root Mean Square
Errors (RMSE) between the ideal covariance matrix ΓΓΓ and:
• Γ̂ΓΓd , the SCM with the defective sensor;
• ˜̂

ΓΓΓd,L2 the L2-rectified SCM with a defective sensor;

• ˜̂
ΓΓΓd,L1 the L1-rectified SCM with a defective sensor.

The corresponding RMSE’s are defined as:

RMSEd =

√√√√√√E


∣∣∣∣∣∣ΓΓΓ− Γ̂ΓΓd

∣∣∣∣∣∣2
F

||ΓΓΓ||2F



RMSEd,L2 =

√√√√√√E


∣∣∣∣∣∣ΓΓΓ− ˜̂

ΓΓΓd,L2

∣∣∣∣∣∣2
F

||ΓΓΓ||2F



RMSEd,L1 =

√√√√√√E


∣∣∣∣∣∣ΓΓΓ− ˜̂

ΓΓΓd,L1

∣∣∣∣∣∣2
F

||ΓΓΓ||2F



(17)

1000 trials are used to estimate these quantities.
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Resulting RMSE’s are plotted in Fig. 4 as a function of
the number K of snapshots (SNR is 10 dB in this case). We
notice that the RMSE computed from Γ̂ΓΓd has a value of 40%
for large K due to the defective sensor. When Γ̂ΓΓd is recti-
fied in the L2-norm, the RMSE reaches 20%. But when Γ̂ΓΓd
is rectified in the L1-norm, the RMSE converges to 0 when
K grows as would be observed without defective sensor. Re-
sulting RMSE’s as a function of SNR (K = 200 in this case)
are presented in Fig. 5. At low SNR, we observe that L2 and
L1 rectifications perform equally because all sensors (defec-
tive or not defective) behave almost similarly: they deliver
mainly noise. However at high SNR, we note the improve-
ment brought by L1-rectification.

Figure 4: RMSE between ΓΓΓ and: Γ̂ΓΓd (blue circle), ˜̂
ΓΓΓd,L2

(green square), ˜̂
ΓΓΓd,L1 (red star). One sensor is defective for

the three cases.

Figure 5: RMSE between ΓΓΓ and: Γ̂ΓΓd (blue circle), ˜̂
ΓΓΓd,L2

(green square), ˜̂
ΓΓΓd,L1 (red star). One sensor is defective for

the three cases.

These results confirm the interest of the proposed L1-
rectification approach.

5. CONCLUSION

In the array processing framework, we have introduced a
multiple regression scheme in the L1-norm which exploits
the structural properties of the covariance resulting from the
array symmetries. The proposed method is a rectification
technique which enhances the estimated array covariance
matrix. In the case of a uniform circular array with a de-
fective sensor, this method is able to fully restore the covari-
ance matrix considered without default: it outperforms con-
ventional L2 rectification methods. Moreover, when applied
to the sample covariance matrix without defective sensor, it
yields the same performance as L2 rectification. As a conclu-
sion, the proposed L1 rectification method brings robustness
against sensor failure and there is only benefit to use it in-
stead of L2 rectification.

For future work, the theoretical statistical properties of
the proposed method will be investigated.
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