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ABSTRACT

This paper investigates a game theoretical algorithm for
positioning wireless nodes. The particular set-up consid-
ers a set of anchor sensor nodes, whose power levels are
to be selected according to a twofold criterion: minimum
power level and desired positioning quality for users, as-
sessed by the geometric dilution of precision metric. The
results of the proposed potential game are compared to
those obtained by a centralized algorithm, with com-
plete information and larger computational cost, show-
ing remarkable results and reduced complexity. A dis-
tributed implementation of the game, based on local
information, is also provided.

1. INTRODUCTION

Localization and positioning is a fundamental aspect in
many applications of wireless sensor networks (WSNs).
Industrial automation systems, estimation of random
fields, or asset tracking are a few examples. Since many
WSN applications will be deployed indoors, positioning
using Global Navigation Satellite Systems (GNSS) can-
not be guaranteed. In addition, the GNSS module is
well-known to be power hungry. Positioning methods
based on cooperation among sensors are a promising
candidate to achieve a high degree of accuracy. Typ-
ically, cooperative positioning on WSN is carried out
using trilateration, which needs at least three distance
measurements (2D) to nodes with known position to
obtain an estimate on the node position. To that end,
the IEEE 802.15.4a standard has defined a protocol to
obtain distance measurements based on time of arrival,
which achieves much higher accuracy than received sig-
nal power methods [1].

In this paper we assume that a given WSN has a
number of anchor nodes with known position and a
much larger number of nodes with unknown position.
Anchor and target nodes are IEEE 802.15.4 compliant
and access the medium in non-beacon mode of operation
at the MAC layer [2]. Reference nodes, which are as-
sumed to be static and strategically deployed to provide
sufficient distance measurements to all sensors, transmit
beacon signals to allow all other nodes to obtain their
position based on trilateration. The position of anchor
nodes may be obtained via GNSS, or programmed upon
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deployment. In addition, we assume that nodes obtain
distance estimates directly from anchor nodes, not via
multi-hop transmission over other sensors. Under this
setup, we seek to minimize the transmitted power of an-
chor nodes in order to maximize battery life. Clearly, a
tradeoff exists between transmit power and positioning
performance: if an anchor node transmits with lower
energy, it will reach a smaller number of sensors, and
those left outside coverage will obtain a worse position
estimate. We seek to guarantee a minimum position-
ing performance by specifying a maximum value for the
Geometric Dilution of Precision (GDOP) [3]. We then
seek to minimize the transmit power of anchor nodes via
a non-cooperative game, which belongs to the class of
potential games [4]. We use game theory because is an
interesting collection of analytic tools that provides dis-
tributed decision process. While many applications of
game theory for communications exist in the literature
[5, 6, 7], the problem of localization [8] and positioning
[9] has been less exploited.

The remainder of the paper is organized as follows.
We describe the positioning problem addressed in this
paper in Section 2. Section 3 introduces some general
concepts of game theory as well as the game proposed.
In Section 4 the game is modified addressing implemen-
tation aspects, as well as obtaining a more distributed
solution. Section 5 shows the simulation results and
Section 6 concludes the paper.

2. DISTRIBUTED POSITIONING IN
WIRELESS SENSOR NETWORKS

The problem under study involves the distributed po-
sitioning of nodes in a WSN. The setup we consider in
this paper is composed of a set of M nodes, that aim at
estimating their position; and a set of N anchor nodes
with known locations, emitting ranging signals to allow
positioning of the former nodes. Respectively, we define
the two-dimensional coordinates of the nodes as

x@ = [z0), 40T j=1,....,.M (1)
x0 = [z, y )7 i=1,...N. (2

We define the set of anchor nodes that provide cov-
erage to the j-th node as Nj, and its dimension as N;.
Similarly, we define the set of target nodes whose mes-
sages are received at the i-th anchor node as 7;, with
dimension being 7;.
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2.1 Geometric Dilution of Precision

The GDOP is a dimensionless value that is used to as-
sess the goodness of a certain geometry for positioning
purposes [3]. Notice that GDOP is a value associated
to a given node that observes a spatial disposition of
anchor nodes. The so-called wvisibility matriz of the j-th
node can be formulated as

2@ g ME
Pj,1 Pj1
H; = : : ) (3)
) B ) N
x(a),xéNﬂ y(1)7y5l 3)
Pj,Nj Pj,N;

where Pii = \/(x(]) _ x((li))Q + (y(]) — y{(j))2 is the ge-
ometrical distance between the j-th node and the i-th
anchor. The corresponding GDOP is then calculated as

GDOP; = 1 /trace { (HIH,)~1} (4)

and can be thought of as a value that measures the ef-
fect of network geometry on the position solution. At a
glance, larger GDOP values imply worse positioning so-
lutions, and viceversa. Actually, there is a clear relation
between GDOP and the theoretical lower bound on the
variance of a position estimator [10].

Notice that anchor nodes in (3) are those of the set
Nj, and thus H; € RYi*2 A depends on the num-
ber of anchor nodes whose beacons are received with
enough power by node j. Therefore, it depends on the
transmit powers of the anchor nodes. For a given re-
ceiver sensitivity s and distance-dependent path loss
function fr(d), an anchor node with transmit power
po at distance d, from node j belongs to set N if
pa > 8/fi(dy). Therefore, given the dependence of
GDOP; on N, we may in turn express the GDOP as
a function of the power vector of the anchor nodes p
explicitly as GDOP = GDOP(p). Moreover, such de-
pendence is monotonous, since if we decrease any com-
ponent in p the resulting set N is equal or smaller and,
in turn, a smaller set \V; results in larger or equal GDOP,
as stated in the following proposition.

Proposition 1. If p; and q; are power levels such that
pi < gi, then GDOP;(pi, p—i) > GDOP;(q;, p-i) -

Proof. 1t suffices to show that GDOP is a non-increasing
function with respect to the power of an anchor node.
The rationale is as follows: it was proved that GDOP is
a monotonically decreasing function with the number of
anchor nodes [3]. In other words, no matter the result-
ing geometry seen by the node, including a new anchor
node in matrix H; will always reduce (or at most left
unaltered) the GDOP value. The proposition is proved
since increasing the power level of a given anchor node
increases its coverage and, potentially, can result into a
larger number of anchor nodes seen by a non-empty set
of nodes. O

Let us define the mean GDOP over the entire net-
work as

M
GDOP(p) = % 3~ GDOP; (p) . (5)

and notice that Proposition 1 also holds for the
mean. As a guide, the minimum GDOP value in two-
dimensional scenarios was shown to be 2/ VN , with N
being the number of anchor nodes considered [11].

3. GAME THEORETICAL APPROACH TO
POSITIONING WIRELESS SENSORS

Game Theory is a collection of models and analytic tools
used to study interactive decision processes [12, 5]. We
limit our discussion to non-cooperative models that ad-
dress the interaction among individual decision makers.
Such models are called games and the decision mak-
ers are referred to as players which are assumed to
be rational in this work. A strategic non-cooperative
game I'(Q, A, u) has three main components: i) 2 is
the set of N players; ii) A is the set of pure strategies
and a = [ay,...,an]T € A C RY the chosen strate-
gies, where a; € A; represents the strategy of the i-th
player over the set of its possible strategies A;. Thus,
A=xN A anda_;, € A_; = xé\;i.Aj represents the
strategies of all players but the i-th; i) u; : A — R is
the utility function of the i-th player. The utility func-
tion (or payoff) quantifies the preferences of each player
to a given strategy, provided the knowledge of other’s
strategies. Then, u £ {u;};cq is the set of all N utility
functions.

Then, a non-cooperative game is a procedure where
players choose the strategy that maximizes their utility
function. The Nash equilibrium (NE) is a stable solution
of the game in which no player may improve its utility
function by unilaterally deviating from it.

Definition 1 (Nash Equilibrium). A strategy profile a*
is a Nash equilibrium if, Vi € Q and Va; € A, w;(a*) >
ui(ai, aiz) .

In general, games may have a large number of NE
or may not have any. Thus, it is of interest to design
the utility function in a way such that the game has
at least one equilibrium point. It is proved in [13] that
under certain conditions of the utility function, the exis-
tence and uniqueness of a NE is ensured. However, the
utility function may be designed according to a criteria
which could eventually yield to non-convex functions. In
those cases, there is another way for deriving sufficient
conditions for existence and uniqueness of the NE in a
game based on the so-called potential games [4]. This
type of games is given when the incentive of all players
to change their strategy can be expressed by a global
utility function V(a). We use the name ezact potential
game (EPG) when the game admits an exact potential
function, i.e., a player-independent real valued function
that measures the marginal payoff when any player de-
viates unilaterally.

Definition 2 (EPG). A strategic game T'(Q, A, u) is
an exact potential game if there exist an exact potential
function V. : A — R st. Vi € Q,Va_;, € A_; and
Va;,b; € A;

V(ai,a_i) — V(bi,a_i) = ui(ai, a_i) — ui(bi,a_i) . (6)

An important result due [4] is that the optima of the
potential function of an EPG correspond to the Nash
equilibria of the game.
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3.1 Game Theoretical Algorithm

In our problem, players are the anchor nodes and the
game is that of finding a NE such that each anchor node
is transmitting at a minimal power while maintaining
a certain positioning quality for the M target nodes.
As a metric to assess such quality we use the GDOP.
With this setup, following the nomenclature introduced
in Section 2, ) is the set of anchor nodes in the network.
The set of strategies that the i-th reference node can
choose are the set of its possible discrete power levels
P;. We define p = [p1,...,pn]T € P = x¥,P; as
the vector containing the strategies of each node. We
also assume that, at the beginning of the game, anchor
nodes transmit with their maximum power level in order
to gather information and allow initial positioning of
nodes.

We adopt an iterative best response algorithm to
achieve a NE of the game defined by I'(2, P, u). An-
chor nodes decide iteratively its power transmission by
maximizing its utility function,

p; = i(Pi, P—i)} - 7
P arg;r}ea%{u (pi»P-i)} (7)

After each iteration, the selected power level may
modify the geometry of the network, thus impacting on
the maximization of other players’ utility.

The design of a utility function and the existence of
a potential function is crucial for the task of identifying
NE in the game. In our algorithm the goal is to attain
a desired positioning quality for the M target nodes, as
well as reducing the total power of the N anchor nodes.
As presented in Section 2.1, the GDOP provides an ap-
pealing metric to assess such quality. Therefore, the al-
gorithm accepts a strategy if condition GDOP(p) < 7 is
fulfilled, with ~ being a design parameter. Recall that
the initial topology is such that all nodes transmit at
maximum power. Following the result in [6], the utility
function stated in Proposition 2 is considered.

Proposition 2. The game I'(Q), P,u) where the individ-
ual utilities are given by

(o N — J Pmaz—pi if GDOP(p;,p—i) <7
ui(pi, P—i) = { —Di otherwise
(8)

is an EPG and the exact potential function is

Pmaz — Zﬂpz Zf GDOP(pm pfz) S Y
_ ic
Vip) = > pi otherwise,
i€Q

(9)

where Pimaz 18 the maximum power of the sensor node.
Proof. Refer to [7] for a similar result. O

The designed game falls into the category of EPG
games, and thus finding the NE point of (8) is equiv-
alent to maximize the potential function in (9). We
should notice that GDOP is not a convex function on p.
Therefore, we cannot claim that V(p) has a single op-
timum, and thus the game might have several NE that
satisfy GDOP(p) < v

4. DISTRIBUTED IMPLEMENTATION

The game presented above has several challenges when
it comes to implementation. A major concern re-
lates to the amount of information exchange required
in the networks, as anchor nodes require knowledge of
global information of target nodes’ in order to calculate
GDOP(p). Our goal here is to minimize the information
exchange requirements in order to preserve the benefits
from power savings, due to reduced transmission power
at the reference nodes. To that aim we propose to use
other metrics, instead of GDOP(p), that only require
transmission of information from in-range target nodes
to anchors at each game iteration. This information
includes the target’s own position estimate and the cor-
responding set Nj.

We propose to modify the discontinuity condition in
(8)-(9) so as to use only local GDOP estimates. Two
alternatives are presented. Similarly to the game using
global information, we consider that at the beginning
of both games players transmit with maximum power
in order to allow initial positioning of target nodes and
information gathering. The algorithms proceed in an
iterative best response fashion until convergence.

4.1 Local GDOP Average

In this case we consider a local estimate of the aver-
age GDOP, defined as GDOP;(p) in (10) for the i-th
anchor node. Recall that 7; is the set of target nodes
from which the i-th anchor nodes receives status infor-
mation, as they are within its range. Then, each anchor
can compute

GDOP7. (p Z GDOP;( (10)

]67'1

The resulting utility function for the i-th player
is then modified to take values as pmax — p; if
GDOP~; (pi,p—i) < 7. With this setup, it is possi-
ble that the overall GDOP value exceeds the threshold
eventually, since the average used by each player is lo-
cal. In other words, a certain strategy might lead to
GDOP7, (p) < v but GDOP7, (p) > v, forcing the i'-th
node to increase its power in next game iteration.

Notice that this distributed solution approximates
the previous game when transmission powers of target
nodes are such that one can consider GDOP ~ GDOP;,
Vi. Figure 1 shows the Root Mean Square Error (RMSE)

between GDOP and GDOP7;, defined as

N
1
¢(GDOP) = ¥ Z |GDOP — GDOP~ |2, (11)

i=1

versus the ratio range of target nodes over the maximum
distance in the network (thus being independent of a
particular node’s power levels). The approximation is
valid for increasing target node’s power and density.

4.2 Worst Case GDOP

We propose here an alternative design where worst-case
is addressed. In this configuration, the condition to
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Figure 1: RMSE in (11) for a number of target node
densities § (node/m?) and 100 Monte Carlo trials.

maximize u;(p;,p—;) is to ensure that all target nodes
have the specified GDOP. That is, the condition for the
i-th player can be formulated as
GDOP;(p) <7,Vj € T; , (12)
and the utility in (8) should be modified accordingly.
It can be easily seen that a game implementing such
utility yields to a steady state solution. Remember that
game starts with all players transmitting with maximum
power. Notice that a player has no incentives to decrease
its power if it causes at least one target node decrease
its GDOP. Same applies to the rest of players when iter-
ating, and thus a stable solution is eventually achieved
when no player can modify further its strategy.
Although the achieved solution is not optimal (from
an energy-efficient point of view), it provides a strat-
egy set which ensures the specified target GDOP. This
might be useful in applications where this is the most
restrictive issue, rather than proper power control.

5. SIMULATION RESULTS

The proposed algorithm was tested in a scenario com-
posed of M = 20 nodes that aim at locating themselves
using the received signal strength indicator (RSSI) to a
set of N = 8 anchor nodes (Figure 2). Anchor nodes
are distributed at known positions in a 25 x 25 meters
region, whereas the M nodes are placed randomly in the
space. We perform 5 iterations of the game per player,
which play in an ordered sequential fashion. At each it-
eration, the corresponding anchor node has to compute
GDOP values, which depend on the estimated positions
of the nodes (%) for the j-th node). Such position
estimate is performed at target nodes using the set of
received ranges {/;,i}icn; Dy a least squares procedure.
A common model [1] for RSSI-based range estimates is
the log-normal model

pii = pii - 10107 (13)
where v;,; ~ N (0, 0’?71-) and p = 3 is the channel path loss
exponent. In our setup, o;; = 0.1 dBm for all possible
{i,j} pairs.
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Figure 2: Simulation scenario consisting of a 25 x 25
meter region where a set of anchor sensor nodes (big
dots) are distributed at known positions, whereas the
target sensor nodes (black crosses) are placed randomly.
Position estimates (grey crosses) are also shown for the
last iteration of the game.

We consider that sensor nodes have the CC2420
transceiver that is IEEE 802.15.4 compliant. The
set of power levels for the reference nodes are P =
{0,0.032,0.1,0.31,0.50,0.79,1} mW [14] that we ap-
proximate to ranges {0, 5, 10, 15, 20, 25,30} m with [15].
We selected a threshold for the mean GDOP value of
v = 1.3. Recall that initially all nodes transmit at their
maximum power. Results of the proposed algorithm
were averaged over 100 Monte Carlo independent trials
and compared to those obtained by an algorithm that
globally optimizes the set of power levels p. That is, the
solution of the coordination game that finds the global
optima of the potential function V(p). This solution,
implemented by exhaustive search, explores all combina-
tions of power levels for the N nodes (dim{P}) and ob-
tains the set of strategies with lower mean power (Pmin)
over the network, with the condition on the GDOP hold-
ing. In the simulation results, we compare the average
results of our method with the GDOP average of all the
target nodes GDOP(p), the distributed game with local
GDOP average GDOP;(p) and the distributed game
with worst case GDOP, as well as pmin.

Figure 3 shows the evolution of the mean power of
the network versus the iterations of the game. We can
observe that this value decreases and tends to ppin. Of
interest is the comparison of these results with those
in Figure 4, where we can identify that although our
algorithm might yield larger mean power values, we ex-
perience a tradeoff in the final GDOP achieved. Results
of the case with local GDOP average come closer t0 Pmin
than for worst case GDOP. This is because worst case
GDOP assures that each GDOP is below the threshold.

For the sake of completeness, we also plot the result-
ing RMSE on the positioning solution after the power
control game was executed, showing bounded results.
Notice that for each iteration of the game the RMSE
decreases in this phase of refinement of the error.
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Figure 3: Mean power of anchor nodes versus iterations
of the game.
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6. CONCLUSIONS

In this paper we proposed an algorithm for position-
ing nodes in WSNs using the framework provided by
potential games. The proposed solution provides a dis-
tributed approach to select the power levels of anchor
nodes such that a predefined positioning quality is en-
sured, as quantified by the GDOP parameter. From
computer simulations we observed that the algorithm
obtains results which are comparable to a global ap-
proach, as well as requiring much less computational
resources. The complexity is on the order of O(n))
and O(n,) for the global and proposed solutions, re-
spectively, with n, being the number of available power
levels. Also we present a fully-distributed implementa-
tion of this game where GDOP is estimated using merely
the local information available at each anchor node.
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