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ABSTRACT 

This paper proposes a secure multimodal biometric recognition 

system with a multi-level fusion architecture. A multi-spectral cam-

era is used to capture hand images in the visible and in the near-

infrared (NIR) bands of the spectrum. The system uses four biome-

tric traits from the user's hands: palmprint (PP), finger surface 

(FS), hand geometry (HG) and palm veins (PV), being the latter 

captured in the near-infrared band. In the feature extraction stage, 

three different techniques (i.e., Orthogonal Line Ordinal Features, 

Competitive Code and PalmCode) are implemented to extract fea-

tures from the palmprint, finger surface and palm veins. The result-

ing features are then converted to binary in order to apply a secure 

template storage scheme, consisting of a cryptographic hash func-

tion combined with an error-correcting code. In the proposed sys-

tem architecture, the hand geometry is used as a database indexing 

trait to reduce the search time needed for identification. Recogni-

tion results, obtained using a proprietary database that was built 

for that purpose, are presented for different combinations of the 

feature extraction techniques on the various biometric traits, as 

well as for different fusion methods. 

1. INTRODUCTION 

The concept of combining multiple information sources to perform 

recognition is not something new. In fact, the human visual system 

relies on more than one sensory information processing module, 

which is why it is rarely fooled. However, illusions can still occur 

if the assumptions used by the visual system are wrong [1]. 

The goal of using this concept in biometric systems is the same: 

make the system more robust and less vulnerable to fraud. It has 

been used in the early 90s to combine multiple classifiers in hand-

writing recognition [2], to fuse voice and face classifiers into a 

personal recognition system [3] and, in the late 90s, to combine 

face and fingerprints for personal identification [4]. The results 

presented by these early studies showed that the biometric system's 

recognition performance was indeed improved when multiple clas-

sifiers or multiple biometric traits were combined and this was 

empirically demonstrated by Jain et al. in [5]. 

According to [6], multibiometric systems can be further classified 

into six categories: multi-algorithm, multi-sensor, multi-instance, 

multi-sample, multimodal and hybrid. In these systems, data fusion 

can performed at sensor-, feature-, score-, rank- or decision-level. 

Recent research on hand-based multibiometric systems shows 

mostly multimodal [7,8,9] or multi-algorithm [10,11] systems. 

In this paper, results will be presented considering different feature 

extraction techniques on the three biometric traits (PP, FS and PV) 

but, ultimately, the best feature extraction technique for each bio-

metric trait is chosen, so the proposed system can be considered 

multimodal. In this paper, a multi-level fusion architecture is used, 

where the four fingers' features are fused at feature-level and then 

are fused with palmprint and palm vein features at decision-level. 

Only the index, middle, ring and little fingers are used, since the 

thumb's texture is typically not visible in the acquired images due 

to its sideways positioning. 

A novelty presented in this paper is that four biometric traits are 

extracted from the hand's palmar surface, being one of them, the 

hand's geometry, used as a database indexing trait to accelerate the 

identification process. These biometric traits were chosen because 

(i) they can be easily acquired from a single body part; (ii) they do 

not require a high resolution imaging system and (iii) palm veins 

have inherent liveness detection. 

After image acquisition, biometric data is usually stored in a data-

base for future comparisons in identification attempts. Biometric 

systems should preserve their users' privacy by storing data in a 

non-invertible way because a person cannot change a biometric 

trait if it is somehow compromised. In what concerns template 

security in multimodal systems, not much work has been reported. 

However, in this research, a secure template storage technique is 

applied to the biometric templates. It is based on the scheme pro-

posed by Vetro et al. [12] and consists of storing the result of a 

Cryptographic Hash Function (CHF) and the parity bits of a sys-

tematic Error Correcting Code (ECC). The CHF is assumed non-

invertible and guarantees, with a very high probability, that 

( ) ( ) ,H x H x x x′ ′= ⇔ = . However, if x x′ ≈  then ( )H x  will be 

completely different from ( ).H x′  This is what usually happens in 

biometric systems: the enrolled and probe templates are not exactly 

the same due to intra-user variations. To handle this problem, a 

Low-Density Parity-Check (LDPC) code is used. It is particularly 

suitable for biometric systems because its correcting capacity can 

be very finely adjusted by varying the number of parity bits. In a 

biometric system, the objective of an ECC is not to correct all bit 

errors, to avoid correcting impostor templates. In order to improve 

the correcting capacity of the LDPC code, a novel Log-Likelihood 

Ratio initialization method for the LDPC decoder is proposed. 

The last contribution of this paper is a multispectral hand database 

which consists of visible and near-infrared images of 35 users' left 

and right hands. 

The remainder of the paper is organized as follows. Firstly, the 

proposed system architecture is presented in Section 2, which also 

includes the image acquisition system, pre-processing and feature 

extraction details. Section 3 describes the secure template storage 

and matching. In Section 4, experimental results are presented and 

finally, conclusions and future work are discussed in Section 5. 

2. PROPOSED SYSTEM ARCHITECTURE 

The proposed system architecture for enrolment and identification 

phases is illustrated in Figure 1 and Figure 2, respectively. In the 

enrolment phase, five samples from the user’s hand are acquired in 

order to capture most of the intra-user variations. After feature 

extraction, PP, PV and the fused FS templates are securely stored. 

Hand geometry templates are stored in the clear for quick matching 

score computation. Each template is stored with an associated user 

ID. In the identification phase, five samples of the user’s hand are 
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also acquired, to account for small intra-user variations

finger movement or hand rotation). A secure template matching 

procedure is then employed. The matching results a

sions, one for each biometric trait, and the final decision is then 

taken by majority voting. The secure template storage and matc

ing techniques will be further described in section 3.

 

Figure 1 - Block diagram for enrolment phase.

Figure 2 - Block diagram for identification phase.

2.1. Image Acquisition System 

In this research, a JAI AD-080GE camera [13]

visible and NIR hand images. The camera contains two 1/3" pr

gressive scan Charge-Coupled Devices (CCD) with 1024x768 

active pixels. One of the CCDs is used to capture visible light i

ages (400 to 700 nm) and the other captures light i

of the spectrum (700 to 1000 nm), as illustrated in 

 

 

(a) (b)

Figure 3 - (a) - Conceptual diagram for 2 CCD prism optics (

taken from [13]); (b) - image acquisition system

The camera was mounted on a stand and adjusted to a height of 

approximately 45 cm above the base board, which is covered in 

matte black material to avoid light reflections (

capture palm vein images, a dedicated NIR lighting system was 

built using two arrays of Light Emitting Diodes (LED)

each side of the camera, to obtain a uniform lighting environment. 

The LEDs have a peak wavelength of 830 nm. This arrangement is 

made because deoxidized haemoglobin in the veins absorbs light at 

a wavelength of about 760 nm and appears as dark patterns to NIR 

sensitive sensors [14]. Similarly, to obtain well

user variations (e.g., slight 

. A secure template matching 

employed. The matching results are binary deci-

the final decision is then 

The secure template storage and match-

ing techniques will be further described in section 3. 

 

enrolment phase. 

 

Block diagram for identification phase. 

] was used to capture 

visible and NIR hand images. The camera contains two 1/3" pro-

Coupled Devices (CCD) with 1024x768 

active pixels. One of the CCDs is used to capture visible light im-

the other captures light in the NIR band 

000 nm), as illustrated in Figure 3 (a). 

 
(b) 

Conceptual diagram for 2 CCD prism optics (image 

image acquisition system. 

The camera was mounted on a stand and adjusted to a height of 

approximately 45 cm above the base board, which is covered in 

(see Figure 3 (b)). To 

capture palm vein images, a dedicated NIR lighting system was 

Light Emitting Diodes (LED), one on 

to obtain a uniform lighting environment. 

nm. This arrangement is 

made because deoxidized haemoglobin in the veins absorbs light at 

as dark patterns to NIR 

to obtain well lit images in the 

visible, two Compact Fluorescent Lamps

the base board, one on each side. This type of lamps was chosen 

because the light emitted by them has almost no contribution on the 

NIR band. 

With this acquisition system, a mul

built, containing a total of 1840 images. There are 

visible + 10 NIR) from each hand of 

ture of left and right palms from the same user is assumed to be 

different, all right hands are flipped to be in a similar orientation as 

the left hands. Therefore, a total of 

database was built so that the first 5 images of each hand contain as 

much variability as possible to be used in 

when capturing the first 5 images, the user is asked to move his 

hand freely within the camera's field of view.

2.2. Pre-processing 

The main objective of the pre-processing stage

hand contour and extract the palm and finger regions from the i

put images, also called the regions of interest (ROI). The ROIs are 

automatically extracted with the help of several reference points

which are computed from the hand

two techniques: radial distance to a reference point and contour 

curvegram [15]. Each ROI is then rotated to a vertical position and 

resized to 128x128 and 128x32, for palm

 

 
(a) 

 
(c) 

Figure 4 - ROI detection and extraction. (a) 

ROI detection; (b) - Palm veins ROI detection; (c) 

palmprint and fingers ROI; (d) 

2.3. Feature Extraction 

In this paper, three state-of-the-art 

algorithms have been implemented.

extended to finger surface and palm veins feature extraction

geometry features are measured, in pixels, computed from the hand 

contour and include finger widths, lengths and p

as five palm distances between reference points

2.3.1 Orthogonal Line Ordinal Features (OLOF)

This technique has been previously 

palmprint texture [16,17]. In this paper, OLOF feature extraction 

for palm veins and finger surface is proposed. 

this technique are given by 

visible, two Compact Fluorescent Lamps (CFL) are mounted on 

the base board, one on each side. This type of lamps was chosen 

because the light emitted by them has almost no contribution on the 

With this acquisition system, a multispectral hand database was 

images. There are 20 images (10 

visible + 10 NIR) from each hand of 46 individuals. Since the tex-

ture of left and right palms from the same user is assumed to be 

flipped to be in a similar orientation as 

, a total of 92 identities is considered. The 

database was built so that the first 5 images of each hand contain as 

much variability as possible to be used in the enrolment phase, i.e., 

n capturing the first 5 images, the user is asked to move his 

hand freely within the camera's field of view. 

processing stage is to determine the 

extract the palm and finger regions from the in-

ut images, also called the regions of interest (ROI). The ROIs are 

automatically extracted with the help of several reference points, 

ich are computed from the hand contour using a combination of 

two techniques: radial distance to a reference point and contour 

Each ROI is then rotated to a vertical position and 

resized to 128x128 and 128x32, for palm and fingers respectively. 

 
(b) 

 

(d) 

ROI detection and extraction. (a) - Palmprint and fingers 

Palm veins ROI detection; (c) - Extracted 

palmprint and fingers ROI; (d) - Extracted palm veins ROI. 

art palmprint feature extraction 

algorithms have been implemented. The implementation has been 

d palm veins feature extraction. Hand 

, in pixels, computed from the hand 

contour and include finger widths, lengths and perimeters as well 

between reference points. 

Orthogonal Line Ordinal Features (OLOF) 

previously used to extract features from 

. In this paper, OLOF feature extraction 

for palm veins and finger surface is proposed. The filters used in 
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 ( )( ) ( , , ) , , ,
2

πθ θ θ= − +OF f x y f x y  (1) 

 ( ) ( )0 0 0 0

22
( ) cos ( ) sin ( ) sin ( ) cos

( , , ) exp ,
θ θ θ θ
δ δθ − + − − − + − = − −  x y

x x y y x x y y
f x y  (2) 

whereθ  denotes the 2D Gaussian filter orientation,  and δ δx y  are 

the filter's horizontal and vertical scales, respectively. The filter 

parameters are shown in Table 1. For each pixel in the palmprint 

and palm veins ROIs, filtering with three orientations, (0),OF

( 6),πOF ( 3),πOF  is performed to obtain three bit ordinal codes 

based on the sign of the filtering results. 

Table 1 - OLOF filter parameters. 

 Palm & Veins Finger Surface 

Filter Size (Pixels) 35x35 11x11 

Centre 0 0( , )x y  (17,17) (5,5) 

Horizontal Scale (δ x ) 9 2.50 

Vertical Scale (δ y ) 3 0.83 

 

In the pre-processed finger images, only one orientation, 0,θ =  is 

used because the texture found in the fingers usually has one main 

orientation. 

2.3.2 Competitive Coding (CompCode) 

The CompCode scheme has been used for extracting the orienta-

tion information from the palmprint [18] and palm veins [8]. 

CompCode uses six real parts of neurophysiology-based Gabor 

filters θψ with the parameters defined in Table 2. 

Table 2 - CompCode filter parameters. 

 Palm & Veins Finger Surface 

Filter Size (Pixels) 35x35 17x17 

Offset (x,y) (17,17) (9,9) 

σ  5.6179 2.8090 

ω  0.5137 1.0273 

 

CompCode is based on a winner-take-all rule, which is defined as 

 argmin ( ( , ) * ( , , , )),ω θ= ψcompcode j R jI I x y x y  (3) 

where I is a pre-processed image,ψR represents the real part ofψ,

/ 6θ π=j j  and {0,1,2,3,4,5}=j  are the six orientations of the 

filters that are used here. CompCode uses three bits to represent 

each of these orientations. 

2.3.3 PalmCode 

PalmCode [19] uses a circular Gabor filter with optimized parame-

ters (see Table 3) for feature extraction from the palmprint.  

Table 3 - PalmCode filter parameters. 

 Palm & Veins Finger Surface 

Filter Size (Pixels) 35x35 17x17 

Offset (x,y) (17,17) (9,9) 

θ  4π  4π  

σ  5.6179 2.8090 

u  0.0916 0.1833 

 

For each pre-processed image, two matrices are obtained from the 

convolution with the Gabor filter: one for the real and another one 

for the imaginary part. These two matrices are converted into bi-

nary form by the following rules: 

 
1,if Real[ * Image] 0,

0,if Real[ * Image] 0,

≥
= 

<

DC

real

DC

G
bit

G
 (4) 

 
1,if Imaginary[ * Image] 0,

0,if Imaginary[ * Image] 0,

≥
= 

<

DC

imaginary

DC

G
bit

G
 (5) 

The resulting binary matrices are the features to be used for the 

matching process. 

3. SECURE TEMPLATE STORAGE& MATCHING 

The proposed secure template storage and matching modules are 

illustrated in Figure 5 and Figure 6, respectively. When a user is 

enrolled, a set of parity bits, 1 5[ ... ],p p  is computed by the LDPC 

encoder from the user's templates 1 5[ ... ].b b  Parallel to this process, 

the bitwise exclusive disjunction (XOR) between 1 5[ ... ]b b  and a 

randomly generated word, w, is computed. This is done to guaran-

tee that templates from the same person are different in distinct 

biometric systems and to ensure that if a template is compromised, 

a new one can be issued just by changing w. 

The result, 1 5[ ... ],x x  is processed by a CHF to guarantee its privacy 

and the output, 1 5[ ... ],h h  is stored in the database. A user noise 

model, ,η  is also computed. It consists of comparing the five tem-

plates with each other (i.e., a total of 10 comparisons) and updating 

iη  with the probability of the i-th bit changing its value due to in-
tra-user variations. This will give the decoder a good measure of bit 

confidence and does not reveal any information about the bit value 

itself. Finally, the user's template is securely stored as ( ), , ,ηp w h  

and is associated with an ID. The same ID is associated with the 

HG template. 

 

 

Figure 5 - Secure template storage block diagram. 

In the secure template matching module, each probe template in 

1 5[ ... ]′ ′b b  is separately processed and compared against all stored 

templates, sorted according to the HG matching score. The first 

step is to compute the Log-Likelihood Ratio (LLR), given by 

 
( 0 | )

( | ) log ,
( 1| )

i i

i i

i i

P b b
LLR b b

P b b

 ′=
′ =  ′= 

 (6) 

where ( 1| )
i i

P b b′=  is the probability of the i-th bit in b being 1, 

given the observed value in .
i
b′ Since the value in iη  corresponds to 

the estimated probability of ib  changing value, the LLR is com-

puted with the following values 

 
1 ,  if 0

( 0 | ) ,
  ,     if 1

i i

i i

i i

b
P b b

b

η

η

′− =
′= =  ′ =

 (7) 

 
  ,    if 0

( 1 | ) .
1 ,  if 1

i i

i i

i i

b
P b b

b

η

η

′ =
′= =  ′− =

 (8) 
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If the decoding is successful, the hash value 

stored hash value, h, and the user is identified. Otherwise, the ide

tification algorithm takes the next ID in the list 

according to the hand geometry matching score

process. If no more IDs are available, the algorithm takes the next 

probe template and restarts the identification process

 

Figure 6 - Secure template matching block diagram.

Since the enrolled template is no longer available (only a hashed 

version of it), it is impossible to compute a matching score, which 

discards the possibility of using score-level fusion.

template matching module outputs a yes/no decis

4. EXPERIMENTAL RESULTS

Three types of experiments were conducted on the database that 

was built with the proposed image acquisition system.

two experiments, templates are stored in the clear and

module consists of a Hamming distance classifier

periment includes the secure template storage and matching mo

ules. 

The identification test is a one-to-N comparison procedure. In these 

experiments the total number of different hands in the 

used, i.e., 92.N =  The database is divided into

sets containing 920 images each, ten images per hand (5 visible + 5 

NIR). Each PP, PV and FS image generates 5 correct and

correct Hamming distances. The minimum Hamming distances of 

correct and incorrect matching are used as the identification Ha

ming distances of genuine and impostor, respectively.

The recognition performance for PP, PV and FS

computed in the first experiment. The objective is to 

best feature extraction technique for each biometric trait

most Equal Error Rates (EER) are 0, another measure (

puted. This measure, called decidability index, was proposed by 

Daugman [20] and reflects how well separated are the genuine and 

impostor distributions. If the means and standard deviations of the 

genuine and impostor distributions are 1,µ 2 ,µ
tively, then d ′  is given by 

 
( )2 2
1 2

1 2

2

.d
σ σ

µ µ
+

−
′ =  

It is clear, from the results presented in Table 

extraction technique presenting better performance

In the second experiment, data fusion is performed at fea

score-level (see Table 4), using the feature extraction technique 

selected in the previous experiment. When performing score

Template

Database

p(id), ƞ(id)

h(id)

h = h’ Last ID?

No

No

Yes/User Identified

w(id)

Get Next 

Sorted ID

id

Sorted 

IDs

Binary

Templates 

[b’1...b’5]

Get Next 

Template

Last 

Template?

No

Yes/User not 

Identified

Yes

If the decoding is successful, the hash value h′  will match the 
, and the user is identified. Otherwise, the iden-

takes the next ID in the list of candidates sorted 

matching score and repeats the 

the algorithm takes the next 

probe template and restarts the identification process. 

 

template matching block diagram. 

Since the enrolled template is no longer available (only a hashed 

it is impossible to compute a matching score, which 

level fusion. In fact, a secure 

a yes/no decision. 

EXPERIMENTAL RESULTS 

xperiments were conducted on the database that 

was built with the proposed image acquisition system. In the first 

, templates are stored in the clear and the matching 

Hamming distance classifier; the third ex-

periment includes the secure template storage and matching mod-

N comparison procedure. In these 

experiments the total number of different hands in the database is 

is divided into registration and test 

images each, ten images per hand (5 visible + 5 

Each PP, PV and FS image generates 5 correct and 455 in-

. The minimum Hamming distances of 

correct and incorrect matching are used as the identification Ham-

ming distances of genuine and impostor, respectively. 

PP, PV and FS (see Table 5) is 

The objective is to choose the 

each biometric trait. Since 

are 0, another measure ( d ′ ) is com-
puted. This measure, called decidability index, was proposed by 

separated are the genuine and 

tandard deviations of the 

, 2 , 1σ  and 2 ,σ  respec-

(9) 

Table 5, that the feature 

presenting better performance is the OLOF. 

formed at feature- and 

, using the feature extraction technique 

When performing score-level 

fusion, all scores are normalized according to the min

the fusion follows the sum, weighted sum, product 

Table 4 - Recognition performance of PP, PV and FS at feature

and score-level fusion.

 

Feature-Level Fusion 

Sum Rule 

Weighted Sum Rule 

Product Rule 

Min Rule 

 

The final experiment consists in setting a threshold using the LDPC 

code (see Figure 7) and computing the corresponding false acce

tance rate (FAR) and false rejection rate (FRR).

 

(a)

(b) 

Figure 7 - Genuine and impostor distributions

thresholds for: (a) palmprint; (b) finger surface; (c) palm veins.

Three LDPC codes with (n,k) of (3072,2810), (3072,2720) and 

(4096,4050) have been designed to correct genuine palmprint, palm

veins and finger surface templates, respectively. Despite having the 

same size, palm and veins templates require different correcting

capacities, as illustrated in Figure 

bigger and thus, a third LDPC code is r

matrices, H, have a fixed number of 3 ones per column and a var

able number of ones per row: 3ρ =

resent the ratio of rows that contain 3 and 4 ones, respectively. 

LDPC decoding process is iterative and done by Belief Propag

tion. In this paper, the number of iterations is limited to 20, since 

experiments revealed that using more iterations degraded the re

ognition speed and did not improve the correcting capacity i

significant way. 

The LDPC encoder generates a set of parity bits, which are the

solution of the linear modulo-2 equation: 

parity-check matrix and b the binary template. If 

LDPC 

Decoder

Hash 

Function

?
h’

User Identified

XOR

~
b

~
x

Compute 

LLR

fusion, all scores are normalized according to the min-max rule and 

the fusion follows the sum, weighted sum, product or min rules [6]. 

Recognition performance of PP, PV and FS at feature- 

level fusion. 

EER (%) d ′  
 0 7.54 

0 7.77 

0 8.14 

0 9.49 

0 9.66 

The final experiment consists in setting a threshold using the LDPC 

and computing the corresponding false accep-

and false rejection rate (FRR). 

 
(a) 

 
(c) 

Genuine and impostor distributions with respective 

for: (a) palmprint; (b) finger surface; (c) palm veins. 

Three LDPC codes with (n,k) of (3072,2810), (3072,2720) and 

(4096,4050) have been designed to correct genuine palmprint, palm 

finger surface templates, respectively. Despite having the 

same size, palm and veins templates require different correcting 

Figure 7; finger surface templates are 

bigger and thus, a third LDPC code is required. The parity-check 

, have a fixed number of 3 ones per column and a vari-

3 0.3034=  and 4 0.6966ρ =  rep-

resent the ratio of rows that contain 3 and 4 ones, respectively. The 

LDPC decoding process is iterative and done by Belief Propaga-

tion. In this paper, the number of iterations is limited to 20, since 

experiments revealed that using more iterations degraded the rec-

ognition speed and did not improve the correcting capacity in a 

The LDPC encoder generates a set of parity bits, which are the 

2 equation: ,H b p⋅ = where H is the 

the binary template. If b has length n and 
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Table 5 - Recognition results of PP, PV and FS using three feature extraction techniques. 

 OLOF CompCode PalmCode ( 45ºθ = ) 

 Palm / Veins Finger Surface Palm / Veins Finger Surface Palm / Veins Finger Surface 

Template Size (bits) 3072 4096 49152 49152 32768 32768 

EER (%) 0 / 0 0 0 / 0 0 0 / 1.1 0.06 

d ′  8.42 / 8.43 4.60 6.24 / 6.64 3.69 6.24 / 5.80 3.34 

 

p length k, there are k equations and n unknowns. When operating 

on a binary field, there are 2n k− possible solutions [21]. According 

to Vetro et al. [12], the security metric in an ECC-based secure 

biometric system is the number of security bits, given by .n k−
They report 90 and 31.25 security bits for iris and fingerprint rec-

ognition, respectively, with false rejection rates of 1.58% and 15%. 

The proposed system achieves 262, 352 and 46 security bits with 

FRR of 0%, 0% and 2.78% for palmprint, palm veins and finger 

surface, respectively. Since this is a multimodal system and the 

decision is taken by majority voting, an attacker would need to 

guess at least two biometric traits. 

Using the hand geometry as a database indexing trait, it takes, in 

average, 119, 127 and 252 milliseconds to identify a palmprint, 

palm vein and finger surface image, respectively. These identifica-

tion times include pre-processing and feature extraction delays. 

Without the hand geometry, a more exhaustive linear search on the 

database would be required, resulting in the following identifica-

tion times (average): 16.39, 15.91 and 22.47 seconds for palmprint, 

palm veins and finger surface, respectively. These values are ex-

pected because (i) the LDPC decoding process is iterative and 

rather costly; (ii) without the hand geometry, there is no sorting in 

the matching procedure, so the number of decoding attempts is 

proportional to the user ID. 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a fast multimodal identification system capa-

ble of achieving 0% FAR and FRR and an identification time of 

252 ms if palmprint, palm veins and finger surface identification 

are performed in parallel. Storing hand geometry templates in the 

clear allows fast matching score computation but exposes some of 

the user's information. This is not problem in the proposed system 

because the final decision does not rely on hand geometry. Still, 

this may compromise the user's privacy if he/she is also registered 

in a biometric system that relies on hand geometry. In the future, 

this problem will be addressed. Results with more statistical sig-

nificance are also expected, as the multi-spectral hand database is 

continuously growing. Future work will also focus on exploring 

new directions concerning secure template storage. 
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