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ABSTRACT

Deflation-based FastICA, where independent components
(IC’s) are extracted one-by-one, is among the most popular
methods for estimating an unmixing matrix in the indepen-
dent component analysis (ICA) model. In the literature, it is
often seen rather as an algorithm than an estimator related to
a certain objective function, and only recently has its statis-
tical properties been derived. One of the recent findings is
that the order, in which the independent components are ex-
tracted in practice, has a strong effect on the performance of
the estimator. In this paper we review these recent findings
and propose a new “reloaded” procedure to ensure that the
independent components are extracted in an optimal order.
The reloaded algorithm improves the separation performance
of the deflation-based FastICA estimator as amply illustrated
by our simulation studies. Reloading also seems to render
the algorithm more stable.

1. INTRODUCTION

The independent component (IC) model is a semiparametric
model which has gained increasing interest in various fields
of science and engineering during the recent years [6]. The
basic IC model assumes that the observed p-variate random

vector X = (x1,...,x,)7 is a linear mixture of the p mutually
independent sources (IC’s) s = (s, ... 7sp)T. Then
X = As, (N

where A is assumed to be a full rank p X p unknown mix-
ing matrix. Let X = (x1,...,X,) denote a random sample
from the IC model (1). The aim of the independent com-
ponent analysis (ICA) is to find an estimate W (using the
random sample X) of some p X p unmixing matrix W ver-
ifying s = Wx up to permutation, sign and scale changes;
see [6]. Naturally W = A~! is one possible solution.

In the following, P denotes a permutation matrix (ob-
tained by permuting the rows or columns of I,,), J denotes
a sign-chance matrix (a p x p diagonal matrix with entries
+1), and D denotes a p x p diagonal matrix with positive
diagonal elements. Let ¢ denote the set of all full-rank p x p
matrices. Then the set of p X p matrices, defined as

¢ ={C:C=PJD for some P,J and D},

is a subset of ¢. If a matrix W € ¢ is an unmixing matrix
in the IC model (1), then so is CW for any C € €. We
then say that two unmixing matrices W and W3 are (ICA)
equivalent if W| = CW, for some C € ¢, and we write
W, ~ W,. A

All reasonable estimates W should naturally converge
in probability to some population value W (F), that is, the
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value of an independent component (IC) functional W at F,
where Fyx denotes the cumulative distribution function (cdf)
of x. A formal (model independent) definition [9] of an IC
functional is given below.

Definition 1. Ler Fyx denote the cdf of x. The functional
W(Fy) € 4 is an IC functional in the IC model (1) if (i)
W (Fx)A ~ 1, and (ii) it is affine equivariant in the sense
that W (Fgx) = W(F)B~! forall B € 9.

Note that W (Fpx)Bx = W(Fy)x, and therefore
‘W (Fy)x is invariant under invertible linear transformations
of the observation vectors. A finite sample estimator cor-
responding to an IC functional is obtained if the functional
is applied to the empirical distribution based on X. We
then write W = W(X) for the obtained estimator. The
estimator is then also affine equivariant in the sense that
W(BX) =W (X)B~'. Let us denote by S(Fy) = COV(x)
the covariance matrix (functional) of a random vector x. We
note that many IC functionals proposed in the literature are
defined either implicitly or explicitly in such a way that the
covariance matrix of the obtained source vector is equal to
the identity matrix, i.e. COV(W (Fx)x) = I, in which case
W (Fy) = U(Fy)S™/2(F), where U(Fy) is an orthogonal
matrix.

The estimator of interest in this paper is the deflation-
based FastICA estimator [4,5]. The paper is organized as
follows. Sections 2 recalls the deflation-based FastICA algo-
rithm and estimating equations, while statistical properties
of the estimator are discussed in Sections 3. In Section 4, a
new novel method is proposed, called the reloaded FastICA,
to optimize the extraction order of the sources in succeeding
FastICA deflation stages. A Simulation study in Section 5
illustrates the usefulness of our approach, whereas Section 6
presents our conclusions.

2. DEFLATION-BASED FASTICA

Deflation-based FastICA, hereafter FastICA for short, was
introduced in [4] and further developed in [5]. Up to date it
can be considered among one of the most popular methods
to solve the ICA problem.

2.1 FastICA algorithm

Write z = S™!/2(F,)(x — E(x)) for the whitened random
variable, where the square root matrix is chosen to be sym-
metric. FastICA can be seen as a projection pursuit method,
where the directions u;, maximizing a measure of non-
Gaussianity |E (G(uf z)) |, are found successively under the
constraint that uy is orthonormal with the previously found
directions uy,...,u;_1 (for k = 1,...,p — 1), where G(-)
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can be any twice continuously differentiable nonlinear and
nonquadratic function with G(0) = 0. The unmixing ma-
trix is then W = US~!/2 where U = (uy,...,u,)". Note
that the last vector u, is set as a unit vector orthogonal
to uy,...,u,—;. Let g(-) denote the derivative of G(-),
called the nonlinearity. Commonly used nonlinearities are
pow3: g(u) = u’, tanh: g(u) = tanh(aju), gaus: g(u) =
uexp(—ayu?/2) and skew: g(u) = u®, where a; and a, are
tuning parameters, usually chosen to be equal to 1.

Due to the whitening, the FastICA method is commonly
formulated as an algorithm for finding an estimator U. The
algorithm (and its slight variations) given below for the direc-
tions Gy, k =1,...,p — 1, is generally accepted in the litera-
ture. In the algorithm, G, j = 1...,k— 1, are the previously
found directions and the sample mean vector and the sample
covariance matrix are denoted by % and S, respectively.

Algorithm 1 deflation-based FastICA algorithm for {i;

x; < S71/2(x; — %) {Whiten the data}
Uy 0 < Wy inir {Choose an initial value}
A= oo
while € < A do
w1 < ave(x;g(uf ox;)) — ave(g’(u,zox,-))uk_ro
W u — XA (uf0))8;
g g /||
A= [Jug ;) — ]
Ug 0 < Ukl
end while
RETURN ﬁk = Ui,

The FastICA estimator of the unmixing matrix is thus
W = US~1/2 with U coming from the algorithm. The order
in which the sources are found depends heavily on the initial
value Ui = (Wi jnit, - - - ,up’mi,)T. Write next W (U, X) for
the estimate based on the data X and the initial value U;,; =
U. If U is random, then the estimate W (U, X) may get p!
different values depending on random U, and the different
solutions may not be ICA equivalent.

Let S(X) be the covariance matrix computed from X.
It is well known that S(BX)~'/2(BX) = VgS(X)~!/2X
where Vp is an orthogonal matrix depending on B (and
X). With a fixed choice U, the estimate W (U, X) is affine
equivariant in the sense that W(U,BX) = W(U,X)B™!
if W(U,X) = W(UVg,X), that is, if W(U,X) and
W (UVg, X) find the sources in the same order. (The equal-
ities above are up to sign changes of the rows.) A natural
question then is: Is there any choice Uj,; = U(X) such that
the “reloaded” fastICA estimate W (U(X), X)) is fully affine
equivariant. We answer this question in Section 4.

2.2 Estimating equations

To facilitate statistical analysis, it is appropriate to formu-
late the method as an estimator verifying a set of estimating
equations. Furthemore, it is useful to formulate the estimator
without the pre-whitening stage. Let T(Fyx) = E(x) denote
the mean vector (functional). The deflation-based FastICA
functional wy(Fx), k=1,...,p— 1, may be seen [11, 12] as
an optimizer of

|E[G(wi (x — T(Fx))]|

under the constraints (i) w,{S(Fx)wk =1 and (i)
WJTS(Fx)wk =0for j=1,...,k— 1. (For wy, only the first
constraint is needed.) Note that, for the definition of the func-
tional wy, we need functionals T, S, and wy,...,wy_1.

Using the Lagrange multiplier technique, one can easily
show [9, 12] that (under general assumptions) the unmixing
matrix functional W (Fy) = (w1 (Fy), ..., w,(Fy))T satisfies
the p estimating equations

E|g(wf (x— T(F))) (x — T(F))]
k
= S(R) . wiw] B[g (wi (x = T())) (x = T(F))

k=1,...,p. Note that, if s = Wx has independent compo-
nents, then W solves the estimating equations. It is also im-
portant to note that, for all permutation matrices P, also PW
then solves the estimating equations, and therefore the esti-
mating equations do not fix the order of the unmixing vectors
Wiy, Wp.

3. STATISTICAL PROPERTIES

Despite being such a popular tool, rigorous statistical anal-
ysis of the deflation-based FastICA estimator has not been
given until quite recently in [9, 11-13]. In this section we
discuss the limiting distribution and robustness properties of
the deflation-based FastICA estimator. Without loss of gen-
erality we assume that E(x;) = 0, COV(x;) = I,,, and the
true mixing matrix is A =1, = (eq,...,e,)’.

3.1 Limiting distribution

If the first four moments of s exist, then by the central limit
theorem, the joint distribution of \/nX and \/nvec(S —1,)
is asymptotically normal. Furthermore, the existence of the
expected values [, = E[g(e] x;)],

og = Varlg(e[xi)], Agx=E[g(efxi)e]x;]

and

T

Soi =Elg'(erxi)],  Tox =Elg (e xi)eyxi]

are required. We also need to assume that 8y # Ag, k =
1,...,p—1, and we write

2 2
o, —A
8:k 8.k
Oop=———"—"— k=1,...,p. 2
9.k (Ag,k — 6g,k>2’ ) P ( )

Write T, = %Z?:l (g(e[x,-) — ,ug,k)xi and Tk =
Lyn  g(w!(x;—%))(x; —X). Then, under general assump-
tions and using Taylor’s expansion, we get

\/E(Tk — lg,kek) = \/;lTk — Tg7keke,{ \/ﬁi
+ Agpvn(Wi —ex) +op(l), (3)
where A, = E[g/(e] x;)x;x]].

Now recall that the FastiICA unmixing matrix estimator W=
(W1,...,W,)T needs to verify the estimating equations

Ty =S[Wiw! + . +Ww! Ty, k=1,...,p. @)
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But then

A

(I, = U)Vn(Ti — Agrer) = Aga V(S —1))ex

k
+ Z] ejef V/n(W; —e;)+/n(Wi —e)] +op(1),
=

where Uy, = Z’]‘-Zl e je]T-, and, using (3), we get the following
result.

Theorem 1. Let x1,...,x, be a random sample from the IC
model (1) with A =1, E(x;) = 0, and COV(x;) =1,,. Let
W = (Wy,...,W,)T be the solution for the estimating equa-

tions in (4) such that W —p I,. Then, under the general
assumptions,

1 N
Aor—Oux [ef VnTy — Agkv/nSk]
op(l) forl>k,

—/nWy — /Sy +op(1)  forl <k,

VW =

_|_

Vnwg =
and
ViR —1) =~ —1)+op(1).

Remark 1. It follows from Theorem 1 that, for A =1, the
asymptotic covariance matrix (ASV) of the k-th source Wy, is

k—1 )4
ASV (Wy) = Z (otg,j+ l)ejeJT» + Kperel + Oy & Z eel.
j=1 I=k+1

where ki = (E(x}) —1)/4 and @ ; is defined in (2). We note
that this result is in accordance with [12, Corollary 1]. Note
that the asymptotic variances of the diagonal elements of w
do not depend on the choice of the function g(-), but only on
the kurtosis of the corresponding source.

Remark 2. Theorem 1 implies that, if \/nTy, k=1,...,p,
and /nvec(S — 1,) have a joint limiting multivariate distri-
bution, the limiting distribution of \/nvec(W —1,) is also
multivariate normal. Interestingly, the limiting distributions
of the estimated directions W1, ..., W, depend on the order in
which they are found; see [12] for details and illustrations.
The initial value Uy in the FastICA algorithm mainly de-
termines the order of the extracted sources in practice and
hence plays a crucial role in the performance of the estima-
tor.

3.2 Robustness

Due to the different options for the nonlinearity function
g(+), FastICA is often called robust when used with ‘robust’
nonlinearity functions, for example, tanh or gaus function.
The influence function (IF) of the FastICA functional wy,
k=1,...,p,in the IC model (1) is given in [12] as

k—1 p]%—l
F(zwi F) = = pe ) (qj+p)w;——5—w
J=1
P
+ gk Z piwi,

I=k+1

where py = w] (z—E(x)) and

8(pk) — Mgk — AgkDk
/'Lg,k - 5g,k

Since the IF is a weighted sum of the sources wi,...,w,
where the weights are unbounded functions of py, any large
value of p;, j=1,...,p can have unbounded impact on wy
- irrelevant of the choice of the nonlinearity g(-). Thus, ac-
cording to its IF, the deflation-based FastICA will never be
robust - independently of the choice of g(-) (see [12] for de-
tails).

Note also that it is not straightforward to robustify
deflation-based FastICA by replacing mean vector and co-
variance matrix with their more robust counterparts as re-
ported in [1].

Gk =

4. RELOADING FASTICA BY OPTIMIZING THE
EXTRACTION ORDER

In this section, we first discuss the properties of the perfor-
mance index MD for the ICA estimates, and show how it is
connected to the asymptotic distribution of the estimate. We
then suggest a two-step modified FastICA procedure which
optimizes the extraction order.

4.1 Minimum distance performance criterion

Many different performance measures for the IC estimates
have been suggested in the literature, see, for example, [10].
In this paper we use the so called minimum distance (MD)
measure which was recently suggested in [8,9]. The measure
is defined as

1
vp—1
This index is independent of the model specification and sur-
prisingly easy to compute in practice (for details see [8, 9]).
The asymptotic behavior of the index MD is as follows. If

an equivariant estimator W satisfies y/nvec(W —I,,) —
N,2(0,X), then

MD(W,A) =

inf [CWA -1,
Ce%

n
p—1

nMD*(W,A) = [off(W)||* + 0p(1),

and the limiting distribution of nMD?*(W,A) is that of a
weighted sum of independent chi-square variables [9]. Also,
the expected value n(p — 1)E[MD*(W, A)] converges to the
sum of the limiting variances of the off-diagonal elements of
W as n — oo,

4.2 Reloaded FastICA

In order to achieve optimal performance in terms of the MD
measure, we thus should minimize the sum of the variances
of the off-diagonal elements of the FastICA estimator. Using
Remark 1 it is easy to see that, for A =1,

p(p—1)
2 b

g

Y ASV (%) =2

i#] i=1
which is minimized if the ¢ ;’s are in the increasing order of
magnitude.

To optimize the performance of the deflation-based Fas-
tICA, we therefore suggest the following simple procedure.

(p - i) ag,i +
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g() O E O C Oy L
pow3 5 15 6
tanh  3.14 32.13 2.01

Table 1: The theoretical values of o, ; for different cases.

g() LCE LEC CEL ECL CLE ELC
pow3 57 37 73 53 75 35
tanh 7532 1733 137.79 79.80 135.55 19.57

Table 2: The limiting values of n(p — 1)E[MD?*(W, A)] for
the six different extraction orders.

1. Find any equivariant and consistent estimate Wy (e.g.
FOBI [2]) such that S(WX) =1,,.
2. Find the estimated sources Z = W (X —x17).

3. Find estimates &y, k= 1,..., p, based on Z by replacing
the expected values by averages in (2).

4. Find the permutation matrix P such that, for the permu-
tated sources, the &g_’k are in an increasing order.

5. Reload FastICA algorithm 1 with a new initial value: The
estimate is W (U (X), X) where U(X) = PW,S!/2.

It is easy to see that W (U(X), X)) is fully affine equiv-
ariant. We conjecture that this new estimator has the same
limiting distribution as the simple FastICA estimator which
extracts the sources in the (same) optimal order.

5. SIMULATION STUDY

We performed a small simulation study to demonstrate the
effect of the extraction order of the sources. We show that
reloading FastICA with the data whitened in a new way and
with an initial value Uj,;; = I, gives the optimal performance
among different deflation-based FastICA procedures. The
data used in our simulations comes from a three-variate dis-
tribution; the independent source distributions are (i) the ex-
ponential distribution, (ii) the chi-square distribution with 8
degrees of freedom, and (iii) the Laplace distribution. All
three distributions are centered and scaled to have expected
value 0 and variance 1. The mixing matrix used in our simu-
lations is A = I3. We denote the three sources as E, C, and L,
respectively, and the sequence ECL, for example, means the
extraction order exponential-chi-square-Laplace. We consid-
ered two nonlinearity functions g = pow3 and g = tanh. The
values of corresponding @, i, given in Table 1, were obtained
from (2), where the expectations were calculated using nu-
merical integration.

The expected values of n(p — 1)E[MD*(W, A)] for dif-
ferent extraction orders are given in Table 2. The table clearly
shows that the extraction order has a large impact on the sep-
aration performance. The best extraction order naturally de-
pends on the choice of the nonlinearity function g. Here ELC
is the best order for pow3, whereas LEC is the best for ranh .

To see whether the expected behavior is observed in fi-
nite sample sizes we repeated the estimation of the unmixing
matrix 5000 times for different sample sizes using all six pos-
sible extraction orders for both nonlinearities. The extraction
order can be controlled using six different 3 x 3 permutation
matrices P as initial values U;,;;. For the reloaded deflation-
based FastICA we chose FOBI [2] as the initial estimate. The
FOBI functional is an affine equivariant IC functional, and

the limiting distribution of the unmixing matrix estimate is
known to be multivariate normal [7]. FOBI has the advan-
tage that it is easy to compute, and, unlike FastICA, it al-
ways gives a solution. In this simulation study we included
the FastICA estimators using random initial values as well.
Then the extraction order is also random, and hence the per-
formance is expected to be a mixture of the performances of
the six possible estimators with different (fixed) extraction
orders.

We used the FastICA code [3] for Algorithm 1, and we
retained all the default settings except the initial value. One
problem worth mentioning is that, unfortunately, the algo-
rithm does not always converge. In applied data analysis
the user may be able to change some tuning parameters in
order to obtain a solution. However, this is not feasible in
a simulation study. In our simulations, we simply ignored
the cases when convergence did not occur. (Another option
would have been to set the MD values to 1 in these cases.)

n ECL LCE CEL ELC LEC CLE rand reloaded

1000 20 24 27 0 0 25 5 0
5000 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0
>25000 0 0 0 0 0 0 0 0

Table 3:
pow3.

Number of algorithm failures in 5000 trials for

n ECL LCE CEL ELC LEC CLE rand reloaded

1000 340 472 493 0 0 457 145 0
5000 12 79 71 0 0o 71 11 0
10000 1 13 10 0 0 10 4 0
>25000 0 0 0 0 0 0 0 0

Table 4: Number of algorithm failures in 5000 trials for tanh.

Table 3 and Table 4 give the number of cases when the
algorithm did not converge. These figures clearly illustrate
that for small sample sizes the algorithm often fails to con-
verge for the given initial matrix. The problem is more severe
in case of tanh nonlinearity. However, reloading FastICA
seems to help the algorithm to find a solution.

Figure 1 presents the plots of the average values of
n(p—1)MD*(W, A) over the sample size n. The black lines
in the figure give the results for the deflation-based FastICA
with fixed extraction order, and the horizontal lines repre-
sent the asymptotic expectations given in Table 2. While
for pow3 convergence is reached quickly, this is not the case
for tanh. The worse the performance, the slower the conver-
gence seems to be. The performance of the deflation-based
FastICA with random initial matrix is somewhere between
the optimal and the worst possible case, which supports our
conjecture of being a mixture of the six different cases. The
strange behavior at the large sample sizes when using pow3
may be due to the fact that the algorithm often converges to
a wrong local maxima. It is clear that the average MD of the
reloaded FastICA corresponds to the minimum value among
the six possible cases. Therefore, the reloaded FastICA be-
haves as expected and is basically equivalent with the best
extraction order for that given nonlinearity.
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Figure 1: Average performance of the reloaded FastICA and the deflation-based FastICA based on a random initial value. The
black curves give the performance of deflation based-FastICA when the extraction order is fixed. Horizontal black lines are

asymptotic expectations given in Table 2.

6. CONCLUSIONS

In this paper we reviewed some properties of the deflation-
based FastICA. One important curious property of FastICA
is that the extraction order has a huge impact on the separa-
tion performance. We used this property and suggested the
use of the reloaded FastICA to achieve the optimal extraction
order. In our approach, we first need to run some ICA pro-
cedure that provides a consistent and affine equivariant un-
mixing matrix estimate. Then the extracted sources are per-
muted based on the nonlinearity used, and finally the regu-
lar deflation-based FastICA is performed using the estimated
and permuted sources as whitened data and the identity ma-
trix as an initial value of the rotation matrix. Reloading Fas-
tICA this way yields the best extraction order and renders the
algorithm more stable at small sample sizes as validated by
our simulation studies.

Future research is needed to derive the asymptotic prop-
erties of the reloaded FastICA estimator. Above all, more
research is needed to derive the optimal choice of the nonlin-
earity function as well.
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