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ABSTRACT

In independent component analysis (ICA) it is often assumed
that the p components of the observation vector are linear
combinations of p underlying independent components. Two
scatter matrices having the so called independence property
can then be used to recover the independent components.
The assumption of (exactly) p independent components is
however often criticized, and several alternative and more re-
alistic models have been suggested. One of these models is
the independent subspace model where it is assumed that the
p-variate observed vectors are based on k independent sub-
vectors of lengths p1, ..., pk, p1+ ...+ pk = p. In independent
subspace analysis (ISA) the aim is to recover these subvec-
tors. In this paper we describe a solution to ISA which is
based on the use of three scatter matrices with the indepen-
dent block property.

1. INTRODUCTION

In recent years independent component analysis (ICA) has
become a popular technique to analyze multivariate data.
In the simplest formulation of the independent component
model, it is assumed that the components of a p-variate ob-
served random vector x are linear combinations of the com-
ponents of an unobserved random vector s such that the p
components of s are independent. We can then write

x= Ωs

where Ω is a full-rank p× p mixing matrix. The main
goal in ICA is to find an estimate for any unmixing matrix
Γ such that z = Γx has independent components. Natu-
rally Γ = Ω−1 is one possible choice of the unmixing ma-
trix. There are many estimation algorithms such as FOBI,
fastICA, and JADE to solve the problem. For an overview
see [6]. Quite recently, an approach based on the use of
two scatter matrices with the independence property was pro-
posed, see [8–10].

The assumption that all components have to be indepen-
dent is often criticized, however, and several alternative mod-
els have been suggested. One can assume, for example, that
the p-vector s consists of k subvectors s1, ..., sk which are
independent. The model is then called the multivariate inde-
pendent component model [1, 13] or independent subspace
(IS) model (e.g. in [4, 5, 14]) or ISA model [12]. In inde-
pendent subspace analysis (ISA) one then tries to find an es-
timate for an unmixing matrix to separate the independent
subvectors. In this paper we show how three scatter matrices
with block independence property can be used to solve the
ISA problem.

The paper is organized as follows. In Section 2 we re-
call the concept of a scatter matrix and its main properties.

We show how two scatter matrices with the independence
property can be used to solve the IC problem. Then in Sec-
tion 3 we introduce the independent subspace (IS) model as
given in Theis [14]. Three scatter matrices with the block in-
dependence property are then used to solve the IS problem.
The approach was already proposed in [7] but several results
are proven first time here. A new performance index for the
comparison of different independent subspace estimates is
proposed as well and then used in the simulation study in
Section 4.

Throughout the paper we use the following notation: A
p× p-matrixU is an orthogonal matrix (U′U=UU′ = Ip),
J is a sign-change matrix (a diagonal matrix with diagonal
elements±1),D is a rescaling matrix (a diagonalmatrix with
positive diagonal elements), and P is a permutation matrix
(obtained from Ip by permuting its rows or columns). We
also write

C = {C : C= JPD for some J, P, andD},

that is, if C ∈ C then C has exactly one non-zero element
in each row and each column. Note also that if C = JPD
thenCC′ =C′C=D2 (diagonal). As usual, throughout the
paper we denote the L2 matrix norm || · || which is defined as

||A||= tr(AA′)1/2.

2. SCATTER MATRICES AND IC FUNCTIONALS

Let x be a p-variate random vector with cumulative distribu-
tion function Fx. Its multivariate variation can be described
using a so called scatter functional:

Definition 1 A p× p-matrix valued functional S(F) is a
scatter matrix functional if it is symmetric, positive definite,
and affine equivariant in the sense that

S(FAx+b) =AS(Fx)A
′

for all full-rank p× p matricesA and for all p-vectors b.

The regular covariance matrixCOV(F) is naturally a scatter
matrix, and there are many general families of scatter ma-
trix functionals (M-functionals, S-functionals, an so on) pro-
posed in the literature. Note also that if S(F) is a scatter
matrix then c ·S(F) is a scatter matrix as well for all c > 0.
A general practice then is that the scatter matrices are scaled
so that S(F) = Ip if F is the cdf of an Np(0,Ip) distribution.
The affine equivariance property also implies that if x has an
elliptically symmetric distribution then all scatter matrices
are proportional to the covariance matrix.

A scatter matrix functional S(F) has the independence
property if S(Fx) is a diagonal matrix for all x having inde-
pendent components. The covariancematrixCOV(F) serves
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as the first example with this property. Another example is
the scatter matrix based on fourth moments: If E(Fx) = µ ,

COV(Fx) = Σ, and z= Σ−1/2(x−µ), thenCOV4(F) is de-
fined by

COV4(Fx) =
1

p+ 2
Σ1/2E

(

zz′zz′
)

Σ1/2.

(Here Σ1/2 and Σ−1/2 are taken to be symmetric.) It is easy
to see that COV4(F) is affine equivariant and possesses the
independence property. General families of scatter matrices
such as M-functionals and S-functionals are designed for el-
liptical distributions. Scatter matrices then typically do not
have the independence property. For any scatter matrixS(F),
one can, however, find a corresponding “symmetrized” scat-
ter matrix with the independence property just by defining

Ssym(Fx) = S(Fx1−x2)

where x1 and x2 are two independent copies of x. (It is an
open question whether all scatter matrices with the indepen-
dent property can be formulated in this way.) The regular
covariance matrixCOV and the scatter matrixCOV4 for ex-
ample can be reformulated as a symmetrized scatter matrix.

Next we define what we mean by the independent com-
ponent functional.

Definition 2 We say that a p× p-matrix valued functional
Γ(Fx) is a independent component (IC) functional if

(i) in the IC model x= Ωs,

Γ(Fx)Ω
−1 =C for some C ∈ C .

(ii) Γ(FAx+b) = Γ(Fx)A
−1 for all full-rank p× p matrices

A and for all p-vectors b.

Two scatter matrices with the independence property can
be used to find an IC functional as follows.

Theorem 1 Let S1 and S2 be two different scatter matrix
functionals having the independence property. Define the p×
p matrix-valued functional Γ (and the p× p diagonal matrix
functional Λ) by

ΓS1Γ′ = Ip and ΓS2Γ′ = Λ

where the diagonal elements of Λ are in a decreasing order.
Then Γ is an IC functional in the submodel x = Ωs where
S1(Fs)

−1S2(Fs) has distinct diagonal elements.

Proof As S1 and S2 are affine equivariant, the definition
of Γ implies that Γ(FAx+b) = Γ(Fx)A

−1 for all full-rankA
and all b. Thus (ii) in Definition 2 is true. But then, in the
submodel considered, Γ(Fx)Ω

−1 = Γ(Fs). As both S1(Fs)
and S1(Fs) are diagonal, Γ(Fs) = C for some C ∈ C and
also (i) in Definition 2 is true.

Note that, if Γ is an IC functional, then the random vari-
able z= Γ(Fx)(x−E(x)) has independent components and
is affine invariant in the sense that

Γ(Fx)(x−E(x)) = Γ(FAx+b)((Ax+b)−E(Ax+b)).

Next we define

Hg(Fx) =E(zg(z)′)
(

E(diag(zg(z)′))
)−2

E(g(z)z′)

where g(x) = (g1(x1), . . . ,gp(xp))
′ is a p-variate score func-

tion and z = Γ(Fx)(x−E(x)). Then also Hg(Fx) is affine
invariant, and, in the IC model, Hg(Fx) = Ip. Then an IC
functional can be used to build scatter functionals with the
independence property as follows.

Theorem 2 Let Γ be an IC functional. Then

S= (Γ′Γ)−1 and Sg = Γ−1Hg(Γ
−1)′.

are scatter functionals with the independence property.

Proof (i) As Γ(FAx+b) = Γ(Fx)A
−1 for all full-rankA

and all b then also S(FAx+b) =AS(Fx)A
′ for all full-rank

A and all b. Next note that Hg(FAx+b) = Hg(Fx) for all
full-rank A and all b. Thus both S and Sg are scatter func-
tionals. (ii) Next assume that x has independent compo-
nents. Then Γ(Fx) = C = JPD for some J, P, and D.
But then S(Fx) = D−2 is diagonal. As Hg(Fx) = Ip, also

Sg(Fx) = D−2. Thus both S and Sg possess the indepen-
dence property.

A whole family of scatter matrix functionals with the in-
dependence property is thus given by

Sg(F) = Γ(F)−1Hg(F)(Γ(F)
−1)′

where g is the score function. Note that if Γ is based on S1
and S2 then, in the IC model, Sg(Fx) =S1(Fx). If x does not
obey the IC model then we can expect that Sg(Fx) 6= S1(Fx).

3. THREE SCATTER MATRICES AND ISA

3.1 An algorithm for the ISA problem

The independence subspace model is obtained if the stan-
dardized vector z has independent subvectors. Write then
si for the independent pi-subvectors, i = 1, ...,k, and s =
(s′1, . . . ,s

′
k)
′. Write also p = p1+ . . .+ pk. We also require

that the subvectors si are irreducible, which means that they
cannot be further transformed and decomposed into indepen-
dent subvectors.

For independent subspace analysis we need the new con-
cept of the block independence property. A scatter matrix
S(F) has the block independence property if, for all k and for
all s= (s′1, . . . ,s

′
k)
′ as described above, S(Fs) is block diago-

nal with block sizes p1, . . . , pk. All the scatter matrices with
the independence property discussed in Section 2 have also
the block independence property. (Naturally the block inde-
pendence property implies the independence property. We
do not know, however, whether the independence property
implies the block independence property.)

Let S1, S2, and S3 be three scatter matrix functionals
having the block independence property. If s = (s′1, . . . ,s

′
k)
′

has independent subvectors then Si(Fs), i = 1,2,3, are all
block diagonal with block sizes p1, ..., pk.

Theorem 3 Assume that s = (s′1, . . . ,s
′
k)
′ has independent

subvectors with dimensions p1, ..., pk, and that x=Ωswhere
Ω is a full-rank p× p matrix. Let S1, S2, and S3 be three
scatter matrix functionals having the block independence
property, and let Γ be the IC functional based on S1 and S2.
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Assume that S1(Fs)
−1S2(Fs) has distinct eigenvalues. Then

there exists a permutation matrix P such that, if z = PΓx
then S1(Fz) = Ip, S2(Fz) is diagonal, and S3(Fz) is block-
diagonal with block sizes p1, ..., pk. Then







z1
z2
· · ·
zk






=







A1s1
A2s2
· · ·

Aksk







for some full-rank matrices A1,A2, ...,Ak of sizes p1× p1,
p2× p2, ..., pk× pk.

Proof As Γ is affine equivariant we can, without loss of
generality, assume that Ω = Ip. Then both S1 = S1(Fx)
and S2 = S2(Fx) are block-diagonal, and there is a block-
diagonal Γ∗ = diag(Γ∗1, ...,Γ

∗
k) such that Γ∗S1(Γ

∗)′ = Ip and
Γ∗S2(Γ

∗)′ = Λ∗ (diagonal). Then Γ = P′Γ∗ where permu-
tation matrix P is chosen so that the diagonal element of
P′Λ∗P are in a decreasing order. If, with these choices,
z = PΓx = Γ∗x, then S1(Fz) = Ip, S2(Fz) is diagonal, and
S3(Fz) is block-diagonal with block sizes p1, ..., pk. The fi-
nal step is to note that one can chooseAi = Γ∗i , i= 1, ...,k.

Remark 1 If in the IS model x= Ωs, the independent com-
ponents are standardized so that S1(Fs) = Ip then the IS
components in Theorem 3 satisfy







z1
z2
· · ·
zk






=







U1s1
U2s2
· · ·

Uksk







for some orthogonalmatricesU1,U2, ...,Uk of sizes p1× p1,
p2 × p2, ..., pk × pk. Thus in this case the IS compo-
nents are the same up to an orthogonal transformationU =
diag(U1, ...,Uk).

Based on the above result we now propose the following
Algorithm 1 for the ISA problem with known block sizes
p1, ..., pk. For the algorithm we need the following nota-
tion. We write diagp1,...,pk(S) for a block diagonal matrix
with block sizes p1, ..., pk and with block elements given by
the same elements in S. Matrix offp1,...,pk(S) is defined by

offp1,...,pk(S) = S− diagp1,...,pk(S).

Algorithm 1 An algorithm for ISA problem with known
block sizes p1, ..., pk
[(1)] Find Γ(X) based on S1(X) and S2(X) ( Theorem 1)
[(2)] Z← (X−1nx̄

′)Γ(X)′

[(3)] Calculate

C3(Z) = (diag(S3(Z))
−1/2

S3(Z)(diag(S3(Z))
−1/2

[(4)] Find P=P(Z) to minimize
||offp1,...,pk(PC3(Z)P

′)||2

[(5)] Return unmixing matrix estimate P(Z)Γ(X)

Note that the solution P(Z)Γ(X) is affine equivariant in
the following sense. IfX∗ =AX then

Z∗ = Γ(X∗)X∗ = Γ(AX)(AX)

= Γ(X)A−1AX= Γ(X)X= Z

Figure 1: The observed distributions of the three sources.

and thereforeP(Z∗)Γ(X∗) =P(Z)Γ(X)A−1 and

P(Z∗)Γ(X∗)X∗ =P(Z)Γ(X)X.

3.2 Comparison of the ISA solutions

We thus a have a family of solutions for the ISA problem
based on the three scatter matrices S1, S2 and S3 with the
block independence property. How then to compare different
choices of matrices S1, S2 and S3? For the comparison, we
first write the unmixing matrix as

P(Z)Γ(X) =







B1

B2

...
Bk







where Bi = Bi(X) is a pi × p transformation matrix esti-
mate to the ith subvector, i = 1, ...,k. The solution can also
be given by projection matrices Pi = B′i(BiB

′
i)
−1Bi, and

Pi(X) then estimates the corresponding population valuePi

with rank pi, i= 1, ...,k. Naturally, we require that

P1(X)+ ...+Pk(X) =P1+ ...+Pk = Ip,

and
Pi(X)P j(X) =PiP j = 0, if i 6= j.

We then suggest the following criterion for the comparison
of the estimates.

Definition 3 In the ISA problem, the average distance be-
tween the estimate (P1(X), ...,Pk(X)) and the population
value (P1, ...,Pk) is given by

D2 =
1

2p
min

(α1,...,αk)

k

∑
i=1

||Pαi
(X)−Pi||

2

where (α1, ...,αk) goes through all the permutations of
(1, ...,k).

The index D2 is motivated by the subspace distance in-
troduced in [2]. Clearly, 0 ≤ D2 ≤ 1 and, under perfect sep-
aration, D2 = 0. The strict upper limit depends on the values
p1, ..., pk. The index is also invariant in the sense that the
values of the index for the unmixing matrix estimates







B1

B2

...
Bk






and







A1B1

A2B2

...
AkBk







are the same for all full-rank matricesA1,A2, ...,Ak of sizes
p1× p1, p2× p2, ..., pk× pk.
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Figure 2: Estimation procedure: The original data set (left panel), transformed data set (middle panel), and the transformed
and permuted data set (right panel). The transformation is based on the symmetrized Huber’s matrix and Dümbgen’s shape
matrix, and the permutation is based on S∗3.

Remark 2 Consider the model in Theorem 3. Let B be an
unmixing matrix estimate, and write G=BΩ−1 for the cor-
responding gain matrix. Roughly speaking, the estimate B
is good if G is close to a matrix A= diag(A1, ...Ak) where
A1, ...,Ak are full rank matrices of sizes p1× p1, ..., pk× pk.
If p1 = ...pk = d and

G=







G11 G12 ... G1k

G21 G22 ... G2k

... ... ... ...
Gk1 Gk2 ... Gkk







then, in this special case, an extension of the Amari index
[12, 14] is

1

2k(k− 1)

[

k

∑
i=1

(

∑k
j=1 ||Gi j||1

max j ||Gi j ||1

)

+
k

∑
j=1

(

∑k
i=1 ||Gi j||1

maxi ||Gi j||1

)]

but now with L1 matrix norm || · ||1. (L1 matrix norm is
the sum of the absolute values of the elements of the ma-
trix.) Unfortunately, the value of the extended Amari in-
dex is not necessarily the same for G and AG with A =
diag(A1, ...,Ak). The value is not even necessary the same
for G and UG with orthogonal U = diag(U1, ...,Uk). If
one uses the L2 matrix norm, thenG=UG for all orthogo-
nalU= diag(U1, ...,Uk).

4. EXAMPLE

To illustrate our approach, we considered four different esti-
matesP(Z)Γ(X)where Γ(X) is based on S1(X) and S2(X)
and P(Z) is based on S3(Z). The idea then is that all three
scatter matrices estimate a different type of nonlinear depen-
dency between the components. We then have

(i) two choices of Γ:

• Γ is based onCOV andCOV4 (FOBI)
• Γ∗ is based on the symmetrized Huber scatter ma-
trix [11] and Dümbgen’s shape matrix [3]. This com-
bination is highly robust and was for example used
for robust ICA in [8].

(ii) two choices of S3:

• S3 is Sg where g j(zi j) is the rank of zi j among
z1 j, ...,zn j.

Γ −S Γ −S
*

Γ
*
−S Γ

*
−S

*
random

0.3

0.4

0.5

0.6
D
2

Figure 3: Boxplots for observed values of D2 for the four
estimates Γ-S, Γ-S∗, Γ∗-S, and Γ∗-S∗ different scatter matrix
combinations with a random estimate as reference.

• S∗3 is Sg where g j(zi j) = I(zi j ≥ q3 j)− I(zi j < q3 j)
and q3 j is the observed third quartile of the jth com-
ponent of z.

The data in our simulations come from a 5-variate distri-
bution with two bivariate subvectors s1 and s2 and one uni-
variate component s3. The bivariate sources have the bivari-
ate densities with shapes of the Greek lettersΛ and µ , and the
third univariate source follows an exponential distribution. In
Figure 1 a random sample of size n = 1000 was taken to il-
lustrate the distributions of the components. Figure 2 shows
the stages of the estimation procedure: Using the original
mixed data set X in left panel, transformation Γ∗(X) gives
the transformed data Z in the middle panel, and, finally, the
permutationP(Z) based on S∗3(Z) gives the blocked data in
the right panel.
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As our estimation procedure is affine equivariant, it is
not a restriction to consider only one choice of Ω, say, Ω =
Ip. For all four methods, Γ-S, Γ-S∗, Γ∗-S, and Γ∗-S∗, we

then computed the performance indexD2 in 1000 repetitions
with sample size n = 1000. The boxplots for the results are
given in Figure 3. Natural reference values are given by the
observed values of the performance indices for an estimate
which is just a “random” 5× 5 unmixing matrix. For this
data set, the symmetrized Huber and Dümbgen’s matrices at
first stage (Γ∗), and the scatter matrix S∗3 provides the best
estimate of the unmixing matrix. (Note that S∗3 measures the
dependence in a very strange, non-symmetric, way.)

5. CONCLUSION

In this paper we propose a new approach for the estimation
of the unmixing matrix in the ISA problem which is partly
based on some earlier results presented in [7]. The proce-
dure presented here is based on three scatter matrices with
the block independence property. First two scatter matrices
are used to transform the data, and the third scatter matrix
then finds a correct permutation for the components of the
transformed data, assuming the dimensions of the indepen-
dent subspaces are known. A new index for the comparison
of equivariant estimates is also proposed. The approach is
illustrated with a small example and the procedures with dif-
ferent choices of scatter matrices are compared with a simu-
lation study.
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