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ABSTRACT

Preference measurement (PM) has a long history in marketing,
healthcare, and the biobehavioral sciences, where conjoint anal-
ysis is commonly used. The goal of PM is to learn the util-
ity function of an individual or a group of individuals from ex-
pressed preference data (buying patterns, surveys, ratings), pos-
sibly contaminated with outliers. For metric conjoint data, a ro-
bust partworth estimator is developed on the basis of a neat con-
nection between `0-(pseudo)norm-regularized regression, and the
least-trimmed squared estimator. This connection suggests efficient
solvers based on convex relaxation, which lead naturally to a family
of robust estimators subsuming Huber’s optimal M-class. Outliers
are identified by tuning a regularization parameter, which amounts
to controlling the sparsity of an outlier vector along the entire ro-
bustification path of least-absolute shrinkage and selection operator
solutions. For choice-based conjoint analysis, a novel classifier is
developed that is capable of attaining desirable tradeoffs between
model fit and complexity, while at the same time controlling ro-
bustness and revealing the outliers present. Variants accounting for
nonlinear utilities and consumer heterogeneity are also investigated.

1. INTRODUCTION

The growing volume of consumer-generated media provides ample
testament to the urgent need for understanding the complex interac-
tions between people and computers. Understanding the dynamics
of the emergent socially-intelligent computational systems (SoICS),
is a critical task to social and behavioral engineering towards de-
sired collective objectives. SoICS involve human and computer
‘actors’ whose individual capabilities, values, and preferences de-
termine modes of social engagement. Thus, a holistic approach to
preference measurement, analysis, and management (PM for short)
holds the keys to understanding and engineering SoICS.

PM has a long history in marketing, retailing, product de-
sign, healthcare, and also psychology and behavioral sciences,
where conjoint analysis (CA - the PM ‘workhorse’) is commonly
used [10, 11, 14]. In a nutshell, the goal of PM is to learn the utility
function of an individual or group of individuals from expressed
preference data (buying patterns, surveys, ratings, recommenda-
tions, etc). The pioneering idea behind CA is to decompose con-
sumer preferences, into weights (partworths) of judiciously selected
product attributes [10]. This not only allows one to understand the
preferences of existing products, but also to predict utilities gener-
ated by new products obtained as combinations of the studied at-
tributes. With few exceptions, PM has traditionally been an off-line
task, assuming mostly ‘rational’ individuals, clean data, and linear
utilities that depend on only a few product attributes. These are very
restrictive for existing and forthcoming SoICS, which may involve
thousands of underlying variables and include grossly inconsistent
‘social liars’ or even malicious actors.

To address some of these challenges, the present paper develops
novel noise and outlier-robust partworth estimators for both metric

† Work in this paper was supported by the NSF grants CCF-0830480,
1016605, and ECCS-0824007, 1002180.

and choice-based CA. For metric conjoint data, questionnaire re-
sponses (product ratings) are assumed generated from a linear re-
gression model, which explicitly incorporates an unknown sparse
vector of outliers. The proposed partworth estimator minimizes a
tradeoff between fidelity to the training data, and sparsity of the
outlier vector encouraged via a natural `0-(pseudo)norm regulariza-
tion; or its convex `1-norm surrogate leading to the least-absolute
shrinkage and selection operator (Lasso) [6, 15]. While regulariza-
tion for model complexity control in conjoint estimation has well-
documented merits in terms of generalization capability [7, 8, 5],
the major innovative claim here is that sparsity control is tanta-
mount to robustness control. This is indeed the case since a tunable
parameter in Lasso, controls the degree of sparsity in the estimated
vector of model outliers. Selection of tuning parameters could be
at first thought as a mundane task. However, arguing on the im-
portance of such task as well as devising principled methods to ef-
fectively carry out sparsity control, are at the heart of this paper’s
contribution to the field of CA.

For choice-based CA, a novel sparsity-controlling classifier is
developed that is capable of attaining desirable tradeoffs between
model fit and complexity, while at the same time controlling robust-
ness and revealing the outliers present. Computer simulations show
the effectiveness of the proposed methods.

2. PRELIMINARIES AND ROBUSTNESS

Consider I respondents (e.g., consumers) indexed by i∈ {1, . . . , I},
each rating Ji profiles represented by the p× 1 vectors xij , j ∈
{1, . . . ,Ji}. Each xij comprises p attributes of the profile (or ques-
tion) j presented to respondent i. Parametric and linear utility func-
tions u(x) are typically adopted for modeling preference measure-
ments [2, 18]. In these models responses {yij}Ji

j=1 adhere to the
linear regression yij = x′

ijwi + εij , where (·)′ denotes transpo-
sition, wi is the unknown p× 1 vector of partworths for respon-
dent i, and εij captures random errors. Such a model describes
the three most common types of conjoint data collection formats,
namely: (M1) full-profile ratings, where one question per profile
is presented to the respondent; (M2) metric paired-comparison rat-
ings, where xij is replaced by the difference x̃ij := x(1)

ij −x(2)
ij

of a pair of profiles; and (M3) choice-based conjoint data, where
in addition to taking pairwise differences of profiles, the measure-
ment is the sign of yij [20]. In words, question j under (M3) asks

respondent i to choose between profiles x(1)
ij and x(2)

ij ; whereas un-
der (M2), the surplus utility of the preferred profile over the other
one is also quantified. For simplicity of exposition, focus will be
placed first on individual partworth estimates; that is, each wi will
be estimated separately without fusing information from individ-
ual respondents. Subscript i can clearly be dropped in this case.
Once the homogeneous case is addressed, approaches to account
for consumer heterogeneities are possible along the lines of [8, 20],
as discussed in Section 4.3.

Given survey- or questionnaire-based training data T :=
{yj ,xj}J

j=1, modern statistical learning techniques have been de-
veloped to obtain w. Under (M1) or (M2), the task amounts to
parameter (or generally function) estimation, whereas under (M3)
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it boils down to a binary classification problem [5, 7, 8]. Following
either deterministic or Bayesian formulations, these state-of-the-art
techniques rely on suitably regularized loss functions to “optimally”
tradeoff complexity for error in the resultant model fit – an approach
effecting the desirable generalization capability beyond T [20].

However, most existing partworth estimators have not ac-
counted for outliers commonly present in large volumes of conjoint
data. Outliers can be attributed to multiple factors, including: i) un-
intentional deviations from the adopted model of e.g., choice-based
data; ii) behavioral effects of human respondents, e.g., response er-
rors due to impatient or inattentive responders; and iii) intentional
errors caused by malicious responders. Considering for simplicity
(M1)1, the starting point here is to develop a robust estimator of w
that is universal with respect to the outlier model. One such ap-
proach is the least-trimmed squares (LTS) estimator given by [16]

ŵLTS := argmin
w

s
∑

j=1

r2
[j](w) (1)

where r2
[j](w) is the j-th order statistic among the squared residuals

r2
1(w), . . . , r2

J (w), and rj(w) := yj −x′
jw. The so-termed cover-

age s determines the breakdown point of LTS [16], since J −s pro-
file ratings resulting in the largest residuals are not present in (1).
Beyond this universal outlier-rejection property, the LTS estimator
is an attractive option due to its high breakdown point and desir-
able theoretical properties, namely

√
J-consistency and asymptotic

normality under mild assumptions [16].
Even though (1) is nonconvex, existence of a minimizer ŵLTS

can be established as follows: i) for each subset of {yj ,xj}J
j=1 with

cardinality s (there are
(J

s
)

such subsets), solve the corresponding
ordinary least-squares (LS) problem to obtain a candidate estimator
per subset; and ii) pick ŵLTS as the one among all

(J
s
)

candidates
with the least cost. This solution procedure is combinatorially com-
plex, and thus intractable except for small number of profiles J . Al-
gorithms to obtain (approximate) LTS estimates are available [17].

3. SPARSITY CONTROL FOR ROBUSTNESS

Instead of discarding large residuals, the proposed approach is to
model outliers explicitly and estimate them jointly with w. To this
end, consider introducing scalar auxiliary variables {oj}J

j=1 one
per question (rated profile), which take values oj 6= 0 whenever rat-
ing j is outlier contaminated, and oj = 0 otherwise. This leads to
the preference model yj = x′

jw + oj + εj , where oj can be de-
terministic or random with possibly unknown distribution. In this
under-determined linear regression model, both w as well as the
J × 1 vector o := [o1, . . . ,oJ ]′ are unknown. The percentage of
outliers dictates the degree of sparsity (number of zero entries) in
o. Sparsity control will prove instrumental in efficiently estimat-
ing o, rejecting outliers as a byproduct, and consequently arriving
at a robust estimate ŵ. A natural criterion for controlling outlier
sparsity is to seek the estimator

(ŵ, ô) = argmin
w,o

J
∑

j=1

(yj −x′
jw− oj)

2 +λ0‖o‖0 (2)

where ‖o‖0 denotes the nonconvex `0-norm (equal to the number
of nonzero entries of o). Tuning λ0 ≥ 0 controls sparsity in ô.

As with compressive sampling and sparse modeling schemes
that rely on the `0-norm, e.g., [21], (2) is also NP-hard. In addition,
the sparsity-controlling estimator (2) is intimately related to LTS, as
asserted next [13] (proofs are omitted due to space limitations).

1Upon replacing xij with profile pair differences x̃ij := x
(1)
ij −x

(2)
ij ,

the estimators for model (M1) apply also to model (M2). A robust estimator
for choice-based conjoint data (M3) is presented in Section 4.1.

Proposition 1: If {ŵ, ô} solves (2) with λ0 chosen such that
‖ô‖0 = J − s, then ŵLTS = ŵ in (1).
The importance of Proposition 1 is threefold: i) it formally justifies
the additive contamination model and its estimator for robust CA;
ii) it links sparse linear regression with robust estimation; and iii)
it lends itself naturally to efficient (approximate) solvers based on
convex relaxation. Recalling that the `1-norm ‖o‖1 is the closest
convex approximation of ‖o‖0 [21], motivates relaxing (2) to

min
w,o

J
∑

j=1

(yj −x′
jw− oj)

2 +λ1‖o‖1. (3)

This estimator is universally robust, and subsumes Huber’s M-
estimator for a specific choice of λ1; see e.g., [9]. Unlike Huber’s
formulation though, it is not confined to an assumed outlier con-
tamination model. Albeit non-differentiable, (3) can be solved effi-
ciently via e.g., alternating minimization (block-coordinate descent)
iterations with guaranteed convergence to the global optimum. Iter-
ations comprise a sequence of LS fits for w, and coordinatewise
soft-thresholded updates for o [13]. Alternatively, it is possible
to show that the solutions {ŵ, ô} of (3) are respectively given by
ŵ := X†(y− ôLasso) and ô := ôLasso, where y := [y1, . . . ,yJ ]′,
X† := (X′X)−1X′ with X := [x1, . . . ,xJ ]′; and ôLasso is given
by the Lasso esimator [13]

ôLasso := argmin
o

‖(IJ −XX†)(y−o)‖2
2 +λ1‖o‖1 (4)

where IJ denotes the J × J identity matrix. Selecting λ1 along
the robustification path of Lasso solutions controls the number of
outliers rejected. But this choice is challenging because existing
techniques such as cross-validation are not effective when outliers
are present [16]. To this end, systematic approaches were devised
in [9], which leverage the (robustification) path of Lasso solutions
available for all values of λ1 [6, 15] to select the ‘best’ one dic-
tated by the data. The methods [9] of require either a rough esti-
mate of the percentage of outliers, or, robust estimates σ̂2

ε that can
be obtained using median absolute deviation schemes [16]. Before
closing this section, a remark is in order.

Remark 1 In addition to o it is possible to also promote sparsity
and/or smoothness of the partworth vector w by augmenting the
cost in (3) with additional regularization terms entailing its `1-norm
‖w‖1 and/or its `2-norm ‖w‖2

2. The former promotes sparsify-
ing the partworth vectors and retaining only the most critical at-
tributes explaining the respondent’s preferences. When the num-
ber of attributes p is large, parsimonious u(x) can ease managerial
decision-making. Ridge-type regularization allows to further con-
trol the (model) complexity of the solution, which is important when
the responses J are few and p is considerably larger.

3.1 Estimator refinements

Nonconvex regularization. Instead of substituting ‖o‖0 in (2) by
its closest convex approximation, namely ‖o‖1, letting the surro-
gate function to be nonconvex can yield tighter approximations. To
this end, consider approximating (2) by the nonconvex formulation

min
w,o

J
∑

j=1

(yj −x′
jw− oj)

2 +λ0

J
∑

j=1

log(|oj |+ δ) (5)

where δ ≈ 0 is introduced to avoid numerical instability.
Local methods based on iterative linearization of log(|oj |+ δ)

around the current iterate oj(k), can be adopted to minimize (5).
Skipping details that can be found in [13], this procedure leads to
the following iteration for k = 0,1,2, . . .

[w(k),o(k)] =argmin
w,o

J
∑

j=1

[

(yj −x′
jw− oj)

2 +ωj(k−1)|oj |
]

ωj(k) =λ0/
(

|oj(k)|+ δ
)

, j = 1, . . . ,J
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which altogether amounts to an iteratively reweighted version of
(3). To avoid getting trapped in local minima, a good initialization
for the iteration is the solution of (3). Numerical tests have shown
that a couple iterations of this second-stage refinement suffices to
yield improved partworth estimates ŵ, in comparison to those ob-
tained from (3). The improvements can be leveraged to bias reduc-
tion, also achieved by similar weighted norm regularizers.
Outlier rejection. From the equivalence between (3) and Huber’s
M-estimator, it follows that data {yj ,xj : j s.t. ôj 6= 0} deemed
as outliers are not completely discarded as with LTS. Instead, their
effect is downweighted as per Huber’s loss function [16]. Neverthe-
less, explicitly accounting for the outliers in ô provides the means
of identifying and removing the contaminated data altogether, and
thus possibly re-estimating partworths using the ‘clean’ data.

4. ROBUST CONJOINT ANALYSIS VARIANTS

4.1 Choice-based robust conjoint analysis

Over the last decade, choice-based CA has become a very popular
alternative to metric analysis [11]. For the choice-based data model
(M3) however, the approach to retrieve outliers and robustify the
binary classifier for CA must be modified. Similar to [7] and for
notational simplicity, assume without loss of generality that x(1)

j
is the preferred profile for all questions – otherwise profiles can
be renamed accordingly. With this convention consumer responses
become yj = 1, j = 1, . . . ,J , and the proposed classifier is given by

min
w,o

J
∑

j=1

[

(

1− x̃′
jw

)

+ − oj

]2
+λo‖o‖1 +λw‖w‖2

2 (6)

where (·)+ := max(·,0). To gain further intuition as to why (6) is a
suitable robust estimator for stated-preference data, introduce slack
variables ξj ≥ 0 collected in the vector ξ := [ξ1, . . . , ξJ ]′, and note
that (6) is equivalent to the linearly constrained formulation

min
w,o,ξ

J
∑

j=1

(

ξj − oj
)2 +λo‖o‖1 +λw‖w‖2

2 (7)

s.t. x̃′
jw ≥ 1− ξj , ξ ≥ 0, j = 1, . . . ,J.

Because preference data can be contradictory (preferences change
over time due to external factors, and unmodeled dynamics), it is of-
ten times impossible to find ŵ such that all inequalities x̃′

jŵ≥ 0 are
satisfied. It is thus prudent to allow for some ‘slack’, and try to min-
imize the inconsistencies ξj in the LS sense. This is exactly what
(7) achieves in the absence of outliers. When outliers are present
though, nonzero estimates ôj will ideally take values ôj ≈ ξ̂j , thus
effectively removing the effect of the invalid responses in the esti-
mation process. Note that 1 in the right-hand side of the first set
of inequality constraints accounts for classifier margin; any other
positive constant is equally good.

Problem (7) is a linearly-constrained quadratic program (QP),
and is efficiently solved using general-purpose convex optimization
software. In particular, it can be solved in the primal domain (advis-
able when p is small but J is large), or, in the dual domain (prefer-
able when p is large and J is small). A result with ramifications
to the robustness properties and computational advantages of (6), is
asserted in the following proposition [13].
Proposition 2: The robust CA classifier (6) is equivalent to

min
w

J
∑

j=1

h
(

x̃′
jw

)

+λw‖w‖2
2 (8)

where h : R → R is the ‘Huberized’ square hinge loss function [15]

h(z) :=
{

λo(1− z)−λ2
o/4, z < 1−λo/2,

(1− z)2+, otherwise
. (9)
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Figure 1: Huberized square hinge loss function for λo = 2.

Problem (8) is obtained after eliminating from (6), the optimized
outlier variables ô(w). Examination of (9) (see also Fig. 1) re-
veals that (6) gives rise to three classification regions: r1) contain-
ing ‘consistent’ data for which x̃′

jw ≥ 1; r2) comprising support
vectors for which 1−λo/2 ≤ x̃′

jw ≤ 1; and r3) over which data
satisfy −∞ < x̃′

jw ≤ 1−λo/2, and are deemed as contaminated
with outliers. For λ0 = ∞, ô = 0 and h becomes the squared hinge
loss function used in SVM variants.

When compared to the SVM used for CA [7, 8, 20], the key
advantage of the classifier obtained via (6) is its ability to attain
desirable tradeoffs between model fit and complexity, while at the
same time controlling robustness and revealing the outliers present.
Furthermore, convexity of the cost in (6) is not affected even when
one chooses a different regularizer such as, e.g., λw‖w‖1 to en-
courage sparse partworth vectors and effect model complexity con-
trol. In fact, this could also be a wise choice from a computational
standpoint, since the `1-norm regularized counterpart of (8) attains
piecewise-linear solution paths as λw varies [15]. By capitalizing
on this property, [15] shows that the entire path of solutions is ef-
ficiently obtained, using an algorithm that generalizes the LARS
solver developed for Lasso [6].

4.2 Nonparametric utility function estimation

The linear utility function u(x) = x′w considered so far falls short
in capturing interdependencies among the attributes of each profile
(entries of vector xj ) – customers preferring cell-phones with mp3
players, will also value highly those models with memory capacity
above 4Gb, say. As these interdependencies are driven by complex
mechanisms that are typically hard to model a priori, it is prudent
to let the data dictate the form of the u(x) sought. This motivates
the nonparametric regression methods for PM modeling outlined in
this section.

To ensure versatility, u is only assumed to belong to a (possibly
infinite dimensional) space of e.g., “smooth” functions H [22]. As
estimating u ∈ H from finite data is inherently ill-posed, one typ-
ically invokes properly regularized criteria [19]. Accordingly, u is
robustly estimated from data adhering to (M1) by solving

(û, ô) := arg min
u∈H,o

J
∑

j=1

(yj −u(xj)− oj)
2 +µR(u)+λo‖o‖1

(10)
where R : H→ R is a convex smoothing regularization functional,
and µ ≥ 0 is chosen to tradeoff fidelity to the (outlier compensated)
data for the degree of smoothness measured by R(u). Problem (10)
is variational in nature, and in principle requires searching over the
infinite-dimensional space H.

There is a neat workaround however, if one lets R(u) := ‖u‖2
H

in (10), and endows H with the structure of a reproducing ker-
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nel Hilbert space [22]; with corresponding positive definite repro-
ducing kernel function K(·, ·) : Rp × Rp → R. The following
proposition asserts that in this case, the unique solution of (10)
is finitely parametrized, and it suffices to solve a single instance
of Lasso to determine û along with the outliers ô. Before stat-
ing the result, recall the conjoint data model (M1), the definition
y := [y1, . . . ,yJ ]′, and introduce the kernel matrix K ∈RJ×J with
ij-th entry [K]ij := K(xi,xj). The proof relies on the Representer
Theorem; see e.g., [22], and can be found in [13].
Proposition 3: Consider ôLasso defined as

ôLasso := argmin
o

‖Xµy−Xµo‖2
2 +λo‖o‖1 (11)

where

Xµ :=

[

IJ −K(K+µIJ )−1

(µK)1/2 (K+µIJ )−1

]

. (12)

Then the minimizers {û, ô} of (10) with R(u) := ‖u‖2
H are

fully determined given ôLasso, as ô := ôLasso and û(x) =
∑J

j=1 β̂jK(x,xj), with β̂ = (K+µIJ )−1 (y− ôLasso).
Joint outlier sparsity and function complexity control mecha-

nisms identify the best (µ∗,λ∗
o) in (11), trading-off optimally the

number of outliers rejected and the predictive capability of û. These
methods extend naturally those outlined in [cf. the similarity be-
tween (11) and (4)], and require searching over a collection of ro-
bustifaction paths – one per µ value in a prescribed µ-grid. The
end result yields estimates û with enhanced ecological rationality,
yielding preference models better adapted to the shopping environ-
ment in which customers operate.

4.3 Distributed conjoint analysis

So far a single w was estimated, but multiple {wi}s are often
needed to capture consumer heterogeneity, while improving esti-
mation performance by fusing data from multiple respondents [20,
8, 11]. Traditional approaches have relied on hierarchical Bayes
(HB) [1], and share with convex optimization based ones [8] the
idea of shrinking the individual estimates {ŵi}I

i=1 towards the
population mean w̄. Specifically for (M1), [8] suggests

min
{wi,D,w̄}

I
∑

i=1

J
∑

j=1

(yij −x′
ijwi)

2 +γ
I

∑

i=1

‖wi − w̄‖2
D (13)

which is jointly convex in {wi,D,w̄}, while the positive definite
(PD) D is normalized to have tr(D) = 1; and ‖v‖2

M = v′M−1v.
Matrix D is related to the covariance matrix of the partworth esti-
mators, so that pronounced shrinkage is effected to those wi’s far
away from the mean w̄. MAP optimality is also apparent under a
Gaussian nominal noise assumption, and identical Gaussian priors
on the wi; see [8] for a detailed comparison between (13) and HB
in [1]. Extension to choice-based data (M3) is possible by replacing
the `2-error loss in (13) with e.g., the logistic error [8].

All existing works assume that the data {yij ,xij}I,J
i,j=1 are

available centrally to determine the estimates {ŵi,D̂, ˆ̄w}. How-
ever, collecting all data in a central location may be prohibitive in
certain studies, simply because respondents are not collocated, or
due to finite storage, limited complexity, or even privacy constraints.
In CA-based healthcare studies carried out by pharmaceutical com-
panies, physicians provide private patient information for the pur-
pose of estimating partworth vectors. They may not be willing to
share training data but only the learning results ŵi. These reasons
motivate well the distributed partworth estimator developed in this
section, which is implementable through a cooperating network of
processing units (agents) I := {1, . . . , I}, that exchange messages
with directly connected neighbors. In the sequel, the network of
agents will be modeled as a connected graph, and Ni ⊆ I will de-
note the set of neighbors of agent i.

Algorithm 1 : DRCA
Agents i ∈ I initialize {wi(0),w̄i(0),pi(0)),Pi(0)} to zero,
{Di(0)} to random unit-trace PD matrices , and locally run
for k = 0,1,. . . do

Exchange {w̄i(k),Di(k)} with neighbors in Ni.
Update {wi(k +1),w̄i(k+1)} using (15).
Update Di(k +1) using (16).
oij(k +1) = S

(

yij −x′
ijwi(k +1),λo/2

)

, j = 1, . . . ,J.
pi(k +1) = pi(k)+ c

∑

i′∈Ni
[w̄i(k+1)− w̄i′(k +1)].

Pi(k+1) = Pi(k)+ c
∑

i′∈Ni
[Di(k +1)−Di′(k +1)].

end for

Towards distributing the centralized problem (13), introduce lo-
cal auxiliary copies {Di,w̄i}I

i=1 of the global variables {D,w̄}
per agent, along with constraints w̄i = w̄i′ , Di = Di′ , i ∈ I,
i′ ∈ Ni to ensure consensus of these variables per neighbor-
hood. Introducing the local quantities yi := [yi1, . . . ,yiJ ]′, Xi :=
[xi1, . . . ,xiJ ]′, and likewise for oi; the proposed approach to dis-
tributed and robust (DR) CA solves

min
{wi,w̄i,
Di,oi}

I
∑

i=1

[

‖yi −Xiwi −oi‖2
2 +λo‖oi‖1 +γ‖wi − w̄i‖2

Di

]

s. t. w̄i = w̄i′ , Di = Di′ , i ∈ I, i′ ∈Ni (14)

with constraints tr(Di) = 1, i ∈ I, left implicit. Leaving aside
robustness (cf. λo = ∞), problems (14) and (13) are equiva-
lent since the network is connected. This property is instrumen-
tal because it ensures that the optimal local estimates coincide
with the global minimizer of (13). Interestingly, the structure of
(14) lends itself naturally to distributed implementation via the
alternating-direction method of multipliers (AD-MoM), an iterative
augmented Lagrangian method especially well-suited for parallel
processing [3, 12]. AD-MoM iterations for k = 0,1,2, . . . entail: i)
local optimization tasks to be run per agent; and ii) exchanges of lo-
cal estimates {w̄i(k),Di(k)} only within Ni, i ∈ I. The latter are
critical to percolate the spatially distributed data in T throughout
the network, thus enabling agents to attain consensus on {ŵ,D̂} –
the optimal solution of the centralized problem (13).

A detailed derivation of the DRCA algorithm (tabulated under
Algorithm 1) can be found in [13]; see also [12]. At the beginning
of iteration k+1, agent i collects its neighbors most up to date esti-
mates {w̄i′(k),Di′(k)}i′∈Ni

, and updates its own ones by solving
the following strictly convex optimization problems

{wi(k +1),w̄i(k +1)} = arg min
{w,w̄}

[

‖yi −Xiw−oi(k)‖2
2

+γ‖w− w̄‖2
Di(k) +p′

i(k)w̄+ c
∑

i′∈Ni

∥

∥

∥

∥

w̄− w̄i(k)+ w̄i′(k)
2

∥

∥

∥

∥

2

2





(15)

Di(k +1) = argmin
D

[

γ‖wi(k +1)− w̄i(k +1)‖2
D

+tr(Pi(k)D)+ c
∑

i′∈Ni

∥

∥

∥

∥

D− Di(k)+Di′(k)
2

∥

∥

∥

∥

2

F



 . (16)

While (15) is an unconstrained QP with solution given in closed
form, solving (16) requires an extra iterative procedure. Outliers
are updated by parallel soft-thresholding of local residuals, where
S(z,u) := sign(z)(|z|−u)+ in Algorithm 1. Iteration k+1 is con-
cluded after obtaining dual prices p(k +1) and P(k +1) through
dual ascent updates (see Algorithm 1), where c > 0 is a stepsize
which affects the convergence rate of the DRCA algorithm.
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Table 1: Average partworth estimation errors
Response error Questions SVM [7] Proposed (6)

Low 8 0.3791 0.3730
Low 16 0.2472 0.2445
High 8 0.4023 0.3901
High 16 0.2922 0.2831

To close this section, it is useful to mention that convergence of
the DRCA algorithm to the minimizer of (13) is ensured – for any
c > 0 – by virtue of AD-MoM’s convergence theory [3, Prop. 4.2].

5. PRELIMINARY NUMERICAL TESTS

A simulated test is carried out here to corroborate the effectiveness
of the proposed sparsity-controlling estimator for choice-based CA
(cf. Section 4.1), and compare it with the SVM approach in [7].
Comprehensive numerical tests with both synthetic and real CA
data can be found in [13].

The adopted simulation setup is standard for choice-based CA
simulation studies under different (low-high) response-error lev-
els, and (low-high) number of questions; see e.g. [7, 8]. Stated-
preference questionnaires are simulated with p = 10 binary at-
tributes per product profile, while the x(1)

j were generated accord-
ing to an orthogonal fractional-factorial design with J = 16. As per
(M3), each of the questions comprises a pair of profiles to choose
from, and given x(1)

j , the x(2)
j were obtained through the shifting

method of [4]. In the high number of questions setting, all J = 16
profiles pairs were presented to each respondent. For the reduced-
size questionnaire condition, 8 profile pairs where randomly drawn
from the complete set of 16. Each of the I = 50 respondents in a
homogeneous population were given the same questionnaire, and
‘true’ partworths were drawn from a Gaussian distribution, i.e.,
wi ∼ N (µ1p,σ2

wi
Ip), where 1p is the p× 1 vector of all ones.

The mean parameter µ takes the values 1.2 and 0.2, respectively in
the low and high response error conditions. Since consumer het-
erogeneity is not considered here, values σ2

wi
= µ are adopted for

i = 1, . . . , I . Finally, logistic probabilities were used for the simu-
lated nominal responses yij , i.e.,

Pr(yij = 1) =
exp

(

w′
ix

(1)
j

)

exp
(

w′
ix

(1)
j

)

+ exp
(

w′
ix

(2)
j

) ,

whereas outliers were generated by simulating yi3, i = 1, . . . , I , as
the outcome of an unbiased coin toss.

The results are summarized under Table 1, the figure of merit
being the average partworth estimation error across respondents
∑I

i=1 ‖ŵi −wi‖2/I , after normalizing partworths to have unit `1
norm. Results for the method of [7] are shown under the column
labeled SVM. Interestingly, the proposed sparsity-controlling esti-
mator (6) consistently outperforms the SVM alternative of [7]. Re-
gardless of the number of questions, the performance edge is more
significant under the high response error condition. This is a man-
ifestation of the robustness properties of the novel estimator, not
only against outliers but also against noisy (erroneous) responses.
For all practical purposes, both schemes attain comparable estima-
tion errors under the low response error regime.

6. CONCLUDING SUMMARY

Outlier-robust conjoint estimation methods were developed in this
paper for both metric and choice-based conjoint data. Building on
a neat link between the seemingly unrelated fields of robust statis-
tics and sparse regression and classification, the novel estimators
were found rooted at the crossroads of outlier-resilient estimation,
statistical learning via the Lasso, and convex optimization.
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