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ABSTRACT

The problem of waveform selection for range-Doppler es-
timation in wide-band multistatic radars is addressed. The
transmitted signal is assumed to be cyclostationary, and cy-
clostationarity properties are exploited for range-Doppler es-
timation in severe noise and interference environments. Sim-
ulation studies are carried out to investigate waveform pa-
rameter selection for better estimation performance.

1. INTRODUCTION

The detection and parameter estimation problem for a mov-
ing source by a two-sensor passive radar is addressed in the
most general case in [5]. This problem is equivalent to the
multistatic-radar problem with two receiver sensors when the
transmitted signal is not available for processing. Several
detection-estimation structures have been derived for a mov-
ing source/target scenario when the relative radial speeds be-
tween receiver sensors and source/target can be considered
constant within the observation interval and the so-called
narrow-band condition is satisfied. Such a condition holds
when the product of transmitted signal bandwidth and obser-
vation interval is much smaller than the ratio of the medium
propagation speed to the target radial speed. In such a case,
the Doppler effect in the received signals can be modeled as
a frequency shift and the time scale factor in the complex
envelope can be assumed unity [14]. Both auto and cross-
statistics of signals on the two sensors are involved in the
locally optimum (i.e., for low signal-to-noise ratio (SNR))
detector-estimator in [5]. For each range-Doppler radar cell,
under the narrow-band condition, a suboptimum detector-
estimator is provided in [5]. The time-difference-of-arrival
(TDOA) and frequency-difference-of-arrival (FDOA) of the
signals on the two sensors are estimated by locating the max-
imum of the magnitude of the narrow-band cross-ambiguity
function (NB-CAF) of the signals on the two sensors, pro-
vided that the peak exceeds a threshold which depends on
the desired probability of false alarm and the test statistic
distribution under the null hypothesis.

When large transmitted-signal bandwidths or large data-
record lengths are adopted, then the narrow-band condition
could not be satisfied and the range-Doppler estimation is
performed by resorting to the wide-band cross-ambiguity
function (WB-CAF) [8], [12]. In such a case, for each range-
scale radar cell, a suboptimum detector-estimator consists in
locating the peak of the magnitude of the WB-CAF of the
signals on the two sensors and comparing it with an appro-
priate threshold.

Techniques based on the peak location of the NB-CAF
or WB-CAF provide poor performance in severe noise and
interference scenarios where interfering signals partially or
completely overlap with the useful signal in both time and
frequency domains.

Interference-tolerant algorithms for narrow-band signal
detection and estimation of TDOA and FDOA that pro-
vide satisfactory performance have been proposed by ex-
ploiting the cyclostationarity properties of the involved sig-
nals. Almost-cyclostationary (ACS) signals are an appropri-
ate model for almost all modulated signals adopted in com-
munications, radar, sonar, and telemetry. They exhibit au-
tocorrelation function which is a periodic or almost-periodic
function of time [4]. An extensive analysis of cyclostation-
arity based techniques for TDOA estimation is presented in
[2]. The problem of jointly estimating delay and Doppler
is addressed in [6] in the narrow-band case by exploiting
the joint cyclostationarity of transmitted and received sig-
nals. The detection-estimation problem addressed in [5] is
applied in [3] to weak cyclostationary signals emitted by a
stationary source (no Doppler). All the above mentioned
cyclostationarity-based techniques assume that the narrow-
band condition holds.

In the paper, in the wide-band scenario, an interference-
tolerant cyclostationarity-based technique for estimating the
time-scale ratio (TSR), FDOA, and TDOA of two signals im-
pinging on two sensors and generated by a moving source
or reflected by a moving target illuminated by a radar is
proposed. In order to exploit cyclostationarity in radar, the
transmitted signal is modeled as a finite-time segment of an
ACS signal. Therefore, since ACS signals are finite-power,
relatively long pulse trains should be considered. In addi-
tion, in order to get satisfactory performance in low SNR and
signal-to-interference (SIR) conditions, sufficiently long ob-
servation intervals should be adopted for estimation of cyclic
statistics. Consequently, the narrow-band condition could
not be satisfied and a wide-band model for the received signal
must be considered.

In the case of relative motion between transmitter and
receiver, if the transmitted signal is ACS, under the wide-
band condition transmitted and received signals are not
jointly ACS but, rather, jointly spectrally correlated (SC)
[10]. Analogously, in the case of multistatic radar with
two receiver sensors and target with constant relative radial
speeds with respect to the sensors, the received signals are
jointly SC. Thus, cyclostationarity-based cross-correlation
techniques such those in [6] cannot be adopted for delay and
Doppler estimation. Jointly SC signals have Loève bifre-
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quency cross-spectrum with support contained in lines whose
slope is non-unit and depends on the motion parameters.
Thus, the support is unknown and hence cross-statistics can-
not be reliably estimated [9]. For this reason, the optimum
detection-estimation procedure which requires the computa-
tion of cross-statistics between the signals received on the
two sensors [5] cannot be implemented in practice. In con-
trast, by following the approaches in [1] and [11], the pro-
posed suboptimum detection-estimation technique is only
based on the computation of auto statistics of the signals on
each sensor. These signals are ACS and, hence, under mild
assumptions consistent estimators for their statistical func-
tions exist [4].

The problem of waveform selection for the transmitted
signal in a multistatic radar with two receiver sensors is ad-
dressed via numerical experiments and its performance is
compared with techniques based on NB-CAF and WB-CAF.

The paper is organized as follows. In Section 2 the trans-
mitted signal model is described and its cyclostationarity
properties briefly reviewed. The received signals are mod-
eled in Section 3. The proposed cyclostationarity-based de-
tection and range-Doppler estimation technique is described
in Section 4. Numerical results are presented in Section 5 for
the transmitted waveform design. Conclusions are drawn in
Section 6.

2. TRANSMITTED SIGNAL

The complex envelope xT (t) (with respect to the carrier fre-
quency fc) of the transmitted signal is the pulse train

xT (t) =
Nb

∑
k=1

ak q(t − kTp) (1)

with pulse-repetition period Tp, {ak} binary equiprobable
i.i.d. random variables, and linear frequency modulated
(LFM) pulse

q(t) = rect((t −Td/2)/Td) e jπγct2

(2)

where Td is the pulse width and γc is the chirp rate. The
signal xT (t) can be modeled as a finite-time segment of an
infinite-length pulse-amplitude-modulated (PAM) signal

x(t) = ∑
k∈Z

ak q(t − kTp) . (3)

That is, xT (t) = x(t) rect((t − T/2)/T), where T = NbTp is
the total duration of the transmitted pulse train xT (t). In the
following, we will refer to the transmitted signal x(t) and, ac-
cordingly, we will consider an infinite-length received signal.
Therefore, the finite-length signals available in practice will
be interpreted as segments of these infinite-length signals.

A finite-power complex-valued signal x(t) is said to be
second-order wide-sense ACS if its second-order moments
are almost-periodic functions of time [4]:

E
{

x(t + τ) x(∗)(t)
}
= ∑

α∈A

Rα
xx(∗)

(τ) e j2παt (4)

where (∗) denotes an optional complex conjugation and the
cycle frequencies α range in the countable set A (depend-
ing on (∗)) containing possibly uncommensurate elements.

When the elements of A are all multiples of the same fun-
damental frequency 1/Tp, then the function in (4) is pe-
riodic with period Tp and the signal is said to be cyclo-
stationary. In [13], it is shown that both autocorrelation
function E{x(t + τ) x∗(t)} and conjugate correlation func-
tion E{x(t + τ) x(t)} are necessary for a complete second-
order wide-sense characterization of the complex-valued sig-
nal x(t). The coefficients

Rα
xx(∗)

(τ) = lim
T→∞

1

T

∫ T/2

−T/2
E
{

x(t + τ) x(∗)(t)
}

e− j2παt dt (5)

of the (generalized) Fourier series expansion in (4) are re-
ferred to as (conjugate) cyclic autocorrelation functions. By
double Fourier transforming with respect to t1 = t + τ and
t2 = t both sides of (4) one obtains the Loève bifrequency
spectrum [7]

E
{

X( f1)X (∗)( f2)
}
= ∑

α∈A

Sα
xx(∗)

( f1)δ ( f2− (−)(α− f1)) (6)

where the Fourier transform X( f ) of x(t) is assumed to exist
with probability 1 (at least) in the sense of distributions. In
(6), δ (·) denotes Dirac delta, (−) is an optional minus sign
linked to (∗), and the (conjugate) cyclic spectra Sα

xx(∗)
( f ) are

the Fourier transforms of the (conjugate) cyclic autocorre-
lation functions Rα

xx(∗)
(τ). From (6) it follows that for ACS

signals the support of the Loève bifrequency spectrum is con-
tained in lines with slopes ±1 and correlation exists between
spectral components that are separated by quantities equal to
the cycle frequencies (that belong to the countable set A ).
In contrast, for wide-sense stationary signals, the set A con-
tains the only element α = 0, that is, second-order moments
in (4) do not depend on t and distinct spectral components
are uncorrelated.

The PAM signal defined in (3) is second-order cyclosta-
tionary. Expressions of its (conjugate) cyclic autocorrelation
functions and (conjugate) cyclic spectra can be found in [4].

3. RECEIVED SIGNALS

In the case of relative motion between transmitter and re-
ceiver, if the relative radial speed can be assumed constant
within the observation interval, then the transmitted signal
x(t) experiences a linearly time-varying delay. Thus, the
complex envelope y(t) of the received signal can be written
as [14, pp. 240-242]

y(t) = b x(st − d) e j2πνt (7)

where b is the complex gain, d the time delay, s the time-
scale factor, and ν the frequency shift. In (7), for stationary
radar, in the case of moving target (modeled as a transmitting
source with carrier frequency f ′c) it results d = R0/(c+ v),
s = c/(c+v), and ν =−(v/(c+v)) f ′c = (s−1) f ′c, where R0

is the target range at t = 0, v the relative radial speed between
receiver and target, and c is the medium propagation speed.

In [14, pp. 240-242] it is shown that the time-scale factor
s can be considered unity in the argument of the complex
envelope x(·) provided that the “narrowband condition”

BT ≪ c/|v|= |s/(1− s)| (8)

is satisfied, where B is the bandwidth of x(t) and T is the
length of the observation interval.
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Let x0(t) be the complex envelope with respect to the car-
rier frequency f ′c of the signal transmitted by a source in rel-
ative motion with respect to two sensors and let r1(t) and
r2(t) denote the received signals. If the relative radial speeds
of the source with respect to the sensors can be assumed to be
constant within the observation interval, then, in accordance
with (7), by some straightforward calculation the received
signals on the two sensors can be written as

r1(t) = x(t)+ n1(t) (9a)

r2(t) = b x(s(t − τ̄)) e j2πνt + n2(t) . (9b)

In (9a) and (9b), denoting by bi, si, νi, and di = siτi, the com-
plex gain, time-scale factor, frequency shift, and delay on the
ith sensor (i = 1,2),

s , s2/s1, ν , ν2 − (s2/s1)ν1,
d = sτ̄ , (s2/s1)τ2 − τ1, b , (b2/b1) e j2πν1((s2/s1)τ2−τ1)

(10)
are TSR, FDOA, TDOA, and complex-gain ratio (CGR), re-
spectively. In addition,

x(t) , b1 x0(s1(t − τ1)) e j2πν1t (11)

s2τ̄ = s2τ2 − s1τ1 = d2 − d1 . (12)

4. CYCLOSTATIONARITY-BASED DETECTION

AND RANGE-DOPPLER ESTIMATION

In this section, the proposed range-Doppler estimation
method is presented. Let the transmitted signal x0(t) exhibit
cyclostationarity with cycle frequency α0 and conjugate cy-
clostationarity with conjugate cycle frequency β0.

Accounting for the definition of x(t) in (11), and taking
the Fourier transforms of the (conjugate) cyclic autocorre-

lation functions R
siα0

rir
∗
i
(τ) and R

siβ0+2νi
riri (τ), the following ex-

pressions for the (conjugate) cyclic spectra on the two sen-
sors are obtained:




S
s1α0

r1r∗1
( f ) = S

s1α0
xx∗ ( f )+ S

s1α0

n1n∗1
( f )

S
s2α0

r2r∗2
( f ) =

|b|2

|s|
e− j2πα1sτ̄ S

α1
xx∗

(
f −ν

s

)
+ S

s2α0

n2n∗2
( f )

(13)





S
s1β0+2ν1
r1r1

( f ) = S
s1β0+2ν1
xx ( f )+ S

s1β0+2ν1
n1n1

( f )

Ss2β0+2ν2
r2r2

( f ) =
b2

|s|
e− j2πβ1sτ̄ Sβ1

xx

(
f −ν

s

)
+ Ss2β0+2ν2

n2n2
( f )

(14)
where α1 = s1α0 and β1 = s1β0 + 2ν1 are cycle frequency
and conjugate cycle frequency, respectively, of x(t), Sα

x0x∗0
( f )

and S
β
x0x0

( f ) are the cyclic spectrum and the conjugate cyclic

spectrum, respectively, of x0(t), and Sα
nin

∗
i
( f ) and S

β
nini

( f )

those of ni(t), (i = 1,2).
The joint statistical characterization of r1(t) and r2(t) can

be made by the Loève bifrequency cross-spectrum [7]. It can
be shown that r1(t) and r2(t) exhibit a jointly spectrally cor-
related component with spectral supports contained in lines
with slopes (−)s2/s1 in the bifrequency plane.

In the addressed problem, parameters s1 and s2 are linked
to the state of motion of the source, are unknown, and need
to be estimated. Consequently, even in the noise-free case,
the spectral cross-correlation density cannot be reliably es-
timated due to the lack of knowledge of the support lines

[9]. For this reason, in the following the detection and esti-
mation problem will be addressed by suboptimal techniques
avoiding to use cross statistics but only using auto statistics.
It is worthwhile to underline that the difficulty in estimation
arises from the fact that the time-scale factors cannot be as-
sumed unity due to the wideband model. In contrast, when
s1 and s2 can be both assumed equal to 1, then r1(t) and r2(t)
are jointly ACS and the techniques proposed in [6] in the case
of Doppler shift and those in [2], [3] when the Doppler shift
is absent can be utilized.

The parameters si, νi can be estimated starting from the
technique proposed in [11]. Let

λ
rir

(∗)
i

(α),
∫

R

∣∣∣Ŝα

rir
(∗)
i

( f )
∣∣∣
2

d f (15)

where Ŝα

rir
(∗)
i

( f ), (i = 1,2), denote the (conjugate) frequency-

smoothed cyclic periodograms which are consistent estima-
tors of the (conjugate) cyclic spectra obtained observing sig-
nals in [0,T ] [4].

Let us assume that the values of si and νi are such
that for some ∆α and ∆β the useful signal in ri(t), say

yi(t), has only one cycle frequency in the set J(α0,∆α) ,
[α0 − ∆α/2,α0 +∆α/2] and only one conjugate cycle fre-
quency in the set J(β0,∆β ), and, moreover Sα

nin
∗
i
( f ) = 0

for α ∈ J(α0,∆α) and S
β
nini

( f ) = 0 for β ∈ J(β0,∆β ). In
the ideal case of perfect measurements (that is, for infinite
data-record length and infinitely small spectral resolution so

that Ŝα
rir

∗
i
( f ) = Sα

rir
∗
i
( f ) and Ŝ

β
riri( f ) = S

β
riri( f ) with probabil-

ity 1 (w.p.1)), when α ∈ J(α0,∆α) and β ∈ J(β0,∆β ), ac-
counting for (13) and (14) the statistics λrir

∗
i
(α) and λriri

(β )

are different from zero w.p.1 only for α = αi , siα0 and

β = βi , siβ0 + 2νi, respectively. Thus, in the case of fi-
nite data-record length and spectral resolution, the following
estimates for αi and βi can be considered:

α̂i = arg max
α∈J(α0,∆α)

λrir
∗
i
(α) (16)

β̂i = arg max
β∈J(β0,∆β )

λriri
(β ) . (17)

In accordance with [3], the detection problem, separately on
each sensor, can be formulated by one of the two alternative
hypothesis tests (H1 = yi(t) present, H0 = yi(t) absent)

λrir
∗
i
(α̂i)

H1

≷
H0

λ
(1)
i i = 1,2 (18)

λriri
(β̂i)

H1

≷
H0

λ
(2)
i i = 1,2 (19)

where the thresholds λ
(1)
i and λ

(2)
i depend on the false-alarm

probability and the noise and interference statistics. Note
that, in general, the two detection tests (18) and (19) have
different performance and these detection strategies are not
optimum in the case of two-sensor receiver [3], [5]. In fact,
the optimum detection test involves cross statistics between
signals on the two sensors. However, these statistics cannot
be consistently estimated when the time-scale parameters s1

and s2 are unknown [9]. Then, under H1, accounting for (13)
and (14), estimates of si and νi can be obtained by ŝi = α̂i/α0
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and ν̂i = (β̂i − ŝiβ0)/2. Consequently, estimates of the TSR
s = s2/s1 and FDOA ν = ν2 − sν1 are given by ŝ = α̂2/α̂1

and ν̂ = (β̂2 − ŝβ̂1)/2. It is worthwhile to underline that the
estimates of TSR and FDOA do not require the knowledge
of α0 and β0.

From equations (13) it follows that the estimate of τ̄ can
be obtained by minimizing with respect to γ the L2-norm of

the difference between Ŝ
ŝα̂1

r2r∗2
( f ) and γ Ŝ

α̂1

r1r∗1
(( f − ν̂)/ŝ). In the

ideal case of perfect measurements (Ŝα̂
r2r∗2

( f ) = Sα
r2r∗2

( f ) and

Ŝα̂
r1r∗1

( f ) = Sα
r1r∗1

( f ) w.p.1), according to (13) with Sα
nin

∗
i
( f )≡

0, the solution of the minimization problem is

γ(opt) = |b|2 e− j2πsα1τ̄/|s| (20)

which corresponds to a zero L2-norm. In the real case of
finite data-record length, the L2-norm can be minimized by
locating its stationary point with respect to γ , with γ and γ∗

considered as independent variables. This leads to

γ(opt) = S0

∫

R

Ŝ
ŝα̂1

r2r∗2
( f ) Ŝ

α̂1

r1r∗1

(
f − ν̂

ŝ

)∗

d f (21)

with S0 > 0, which can be shown to be a global minimum.
Consequently, due to (20), the estimate of the TDOA is ob-
tained as

ŝτ̂ =−∠
[
γ(opt)

]
/(2πα̂1) . (22)

In addition, according to (12), an estimate for the difference
d2 − d1 is given by ŝ2τ̂ .

5. NUMERICAL RESULTS

In this section, numerical experiments are conducted aimed
at selecting waveform parameters and investigating the
range-Doppler estimation performance of the proposed
method.

The parameters of pulse q(t) of the PAM signal x0(t),
unlike otherwise specified, are Tp = 64Ts, Td = 12Ts, and

γc = 0.01/T2
s , where Ts is the sampling period, and the

ak assume values ±1 with equal probability. The propa-
gation channels have parameters s1 = 1, ν1 = 0, τ1 = 0,
s2 = 1.01, ν2 = 0.0025/Ts, and τ2 = 3.4Ts/s1. Thus the true
values of TSR, FDOA, and TDOA are s = s2, ν = ν2, and
d = sτ̄ = s2τ2. On both sensors the disturbance is constituted
by circular AWGN, independent on the two sensors, and an
interfering PAM signal coming from a moving source. The
SNR of the Gaussian noise in the bandwidth [−1/2Ts,1/2Ts]
is 25 dB on both sensors. The interfering PAM signal on the
first sensor has pulse q(t), pulse-repetition period TpI = 30Ts,

pulse width TdI = 12Ts, chirp rate γcI = 0.01/T2
s , and has

pulse amplitudes assuming values ±1 with equal probability.
The interfering PAM signal on the second sensor is the same
as that on the first sensor except for TSR sI = 1.005, FDOA
νI = 0.00125/Ts, and TDOA sI τ̄I = 10Ts. On both sensors,
Gaussian noise and interference signal have power spectral
density completely overlapped with that of the useful signal.
However, by taking α0 = β0 = 1/Tp, the useful received sig-
nals on the two sensors exhibit cycle frequencies αi = si/Tp

and conjugate cycle frequencies βi = si/Tp + 2νi which are
not shared with the disturbances. In the experiments, un-
like otherwise specified, ∆α = ∆β = 1/(2Tp), Nb = 27 and
SIR =−3dB on both sensors.

The normalized sample root mean-square error (RMSE),
computed by 100 Monte Carlo runs, of TSR estimate ŝ,

FDOA estimate ν̂ , and TDOA estimate d̂ = ŝτ̂ is evaluated.
The performance of the proposed method is compared with
that of the estimation methods based on the NB-CAF and
WB-CAF. For SIR < 0dB the proposed cyclostationarity-
based method outperforms the classical method consisting
in locating the maximum of magnitude of the WB-CAF. In
fact, in the considered scenario, two peaks are present in the
magnitude of the WB-CAF: the first due to the useful signal
and the second due to the interference. When SIR < 0dB,
the peak due to the interference is higher than that of the
useful signal so that the estimate based on the WB-CAF is
biased. In contrast, when SIR > 0dB the method based on
the WB-CAF, which under some circumstances has almost-
optimality properties [12], has better performance. Due to
the wideband scenario, the performance of the method based
on the NB-CAF is very poor.

In order to investigate the dependence of RMSE on the
transmitted waveform parameters, Nb and Td are assumed to
be variable. The estimates’ sample RMSE versus the number
Nb of train pulses is considered (Figure 1). From these results
it follows that when Nb is sufficiently large, then the signal
selectivity property of the cyclostationarity-based technique
is effective and the proposed method outperforms both meth-
ods based on the NB-CAF and WB-CAF. Results for variable
Td and Nb = 27 are reported in Figure 2. From these results it
follows that for the proposed algorithm Td/Ts = 10 is the best
choice. In contrast, in this interference scenario, classical al-
gorithms have performance practically independent of Td . In
fact, bias is the dominating term in their RMSE. Specifically,
RMSE depends on the behavior of NB-CAF and WB-CAF
in correspondence of the peak relative to interference which
does not depend on Td . Analogous results, not reported here
for lack of space, can be found for performance as a function
of the chirp rate.

6. CONCLUSION

Cyclostationarity properties of transmitted signals are ex-
ploited under the wide-band condition for TSR, TDOA, and
FDOA estimation in multistatic radars with two receiver sen-
sors. Simulation results have shown the tolerance of the pro-
posed method to severe noise and interference environments
where the disturbance signals overlap in both time and fre-
quency domains with the useful signals. The dependence of
the method performance on the transmitted signal parameters
is investigated via simulation experiments.
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