19th European Signal Processing Conference (EUSIPCO 2011)

Barcelona, Spain, August 29 - September 2, 2011

A CUDA IMPLEMENTATION OF INDEPENDENT COMPONENT ANALYSIS
IN THE TIME-FREQUENCY DOMAIN

Radoslaw Mazur and Alfred Mertins

Institute for Signal Processing
University of Liibeck
23538 Liibeck, Germany
{mazur,mertins}@isip.uni-luebeck.de

ABSTRACT

For the blind separation of convolutive mixtures, a huge pro-
cessing power is required. In this paper we propose a mas-
sive parallel implementation of the Independent Component
Analysis in the time-frequency domain using the processing
power of the current graphics adapters within the CUDA
framework. The often used approach for solving the separa-
tion task is the transformation to the time-frequency domain
where the convolution becomes a multiplication. This allows
for the use of an instantaneous ICA algorithm independently
in each frequency bin, which greatly reduces complexity. Be-
sides algorithmic simplification, this approach also provides
a very founded approach for parallelization. In this work,
we propose an implementation using the CUDA framework,
which provides an easy interface for the implementation of
massive parallel algorithms. The new implementation allows
for a speedup in the order of two magnitudes, as it will be
shown on real-world examples.

1. INTRODUCTION

Blind Source Separation (BSS) is a method for restoring sig-
nals from observed mixtures. When neither the original sig-
nals nor the mixing system is known, only blind techniques
can be used. In case of linear instantaneous mixtures and
the assumption of statistically independent sources, Inde-
pendent Component Analysis (ICA) may be employed for
the separation [1, 2, 3].

When dealing with acoustic mixtures of speech this sim-
ple approach is not sufficient. The low speed of sound and
reflections on objects results in soundwaves arriving multi-
ple times with different lags. This convolutive mixing system
can be described using FIR filters, but for realistic scenar-
ios the length of these filters is usual up to several thousand
taps. In this case the unmixing system consists again of FIR
filters with at least the same length.

It is possible to calculate the unmixing filters directly
in the time domain [4, 5]. However, this approach results
in high computational cost and often shows difficulties with
convergence, as the algorithm can get trapped in one of the
many local minima of the objective function.

An often used approach is the transformation to the
time-frequency domain where the convolution becomes a
multiplication [6]. This allows the use of instantaneous meth-
ods in each frequency bin independently. However, if all fre-
quency bins are separated independently, the discrete bins
usually have different scalings, and they can be arbitrarily
permuted. There exist different approaches for solving the
permutation problem [7, 8, 9, 10, 11].

The correction of the different scaling in every frequency
bin may be carried out using the postfilter method from [12].
This approach tries to recover the signals as they have been
recorded at the microphones and thus accepts all filtering
done by the mixing system without adding new distortions.
A similar technique, the minimal distortion principle, has

© EURASIP, 2011 - ISSN 2076-1465

been proposed in [13]. New approaches as proposed in [14]
and [15] solve the scaling problem with the aim of filter short-
ening or shaping.

In this paper we address the problem of the high compu-
tational cost of the time-frequency approach. The first step
of the algorithm, the calculation of the time-frequency rep-
resentation of the speech signals using the blockwise Short-
Time Fourier Transform (STFT), is computationally un-
problematic. But when using a gradient based approach for
the ICA, as in [1], usually a few hundreds of iterations in ev-
ery frequency bin are needed. The computational costs for
this stage are usually too high to be carried out in real-time
on a typical desktop or mobile CPU.

It is possible to reduce the number of iterations by care-
ful initialization. One method is just to use the result of the
neighboring bins as the starting point. In [16] the authors
proposed a method for predicting the unmixing matrix in
the next bin. With a good estimation the number of itera-
tions can be greatly reduced. The major drawback of these
approaches is the consequence of losing the independency of
the individual bins which prohibits a parallel execution.

We propose to carry out these computations using a
CUDA enabled graphics hardware [17]. These graphics
adapters or the Tesla dedicated compute boards consist of up
to 512 compute cores. Each of these cores is capable of per-
forming all the necessary computations of the instantaneous
ICA in a single frequency bin.

2. MODEL AND METHODS
2.1 BSS for Instantaneous Mixtures

In this section, we describe the instantaneous unmixing pro-
cess that we use in each frequency bin of the convolutive
scenario. The described gradient descent procedure needs a
lot of computing power, as it has to be carried out at least
a few hundred times in every discrete frequency bin.

The instantaneous mixing process of N sources into
N observations can be modeled by an N x N matrix A.
With no measurement noise, a given source vector s(n) =

[s1(n),...,sn(n)]” is transformed to an observation x(n) =
[z1(n),...,zn(n)]" by
x(n) = A -s(n). (1)

The separated signals y(n) = [yi(n),...,y~(n)]" may be
obtained by a multiplication with an unmixing matrix B:

y(n) = B -x(n). (2)

The only sources of information for estimating B are the
statistical properties of the observed signals x(n). The as-
sumption of statistically independent sources only allows for
a separation up to an unknown order and ambiguous scaling.
Therefore the separation is considered successful when

BA = DII, 3)

511

Mixing system A

Unmixing System H

Figure 1: BSS model with two sources and sensors.

with IT being a permutation matrix and D an arbitrary di-
agonal matrix.

For the separation we use the Infomax algorithm with
the natural gradient update [1]:

Bii1 =Br + ABy (4)

with
ABy = ux(I—- E {g(y)y” })Bs (5)

and g(y) = (91(y1),...9n(yn)) being a component-wise
vector function of nonlinear score functions g;(s;) =
—pi(s:)/pi(s;), where p;(s;) are the assumed source prob-
ability densities. These should be known or at least well ap-
proximated in order to achieve good separation performance
[18]. For speech signals, a Laplacian distribution may be as-
sumed [7, 8, 9]. In this case, the nonlinear score functions
reduce to g;(s:) = sgn(s;). For complex valued signals, with
the assumption of spherically invariant distributions [19, 20],
the score function reads g;(s;) = sgn(s;) with

Si

s (6)

sgn(s;) =

2.2 Convolutive Mixtures

‘When dealing with real-world acoustic scenarios it is nec-
essary to consider reverberation. The mixing system can
be modeled by FIR filters of length L. Depending on the
reverberation time and sampling rate, L can reach several
thousand taps. The convolutive mixing model reads

L—-1
x(n) =H(n) xs(n) = > H(l)s(n —1) (7)

where H(n) is a sequence of N X N matrices containing the
impulse responses of the mixing channels. For the separation
we use FIR filters of length M and obtain

y(n) = W(n)«x(n) =Y Whx(n-1) (8
=0

with W (n) containing the unmixing coefficients. Figure 1
shows the scenario for two sources and sensors.

Using the short-time Fourier transform (STEFT), the sig-
nals can be transformed to the time-frequency domain, where
the convolution approximately becomes a multiplication [6]:

Y(wkHT) :W(wk)x(wkyT)7 k:O,:l,...,K*l, (9)

with K being the FFT length. The major benefit of this
approach is the possibility to estimate the unmixing matri-
ces W(wy) for each frequency independently, however, at
the price of possible permutation and scaling in each fre-
quency bin. Solutions for those ambiguities can be found in
[7, 8,9, 10, 11] and [12, 13, 14, 15]. In the following we will
concentrate on the possibilities for a fast parallel implemen-
tation using the CUDA framework. For comparison, we first
discuss a reference Matlab implementation.

II = eye(observations);
for ii=1:frequency_bins
W=
X =

1

2

3 eye(observations);
4

5 for
6

7

8

9

spec(:,:,ii);

n=1:iterations

Y =W*X;

delta_W = (II - sign(Y) * Y’/d_length) * W;
W="W+mu* delta_W;

end
10 WW(:,:,ii) = W;
11 end

Figure 2: Matlab code for the time-frequency domain ICA.

3. MATLAB IMPLEMENTATION

In Figure 2, a Matlab implementation of the time-frequency
domain ICA is shown. It mainly consists of two for-loops
which are used to iterate through all frequency bins and carry
out the iterations of the gradient descent of equation (4).
The Matlab syntax allows for an easy and convenient im-
plementation of the gradient calculation. As shown in line
seven, equation (5) and the calculation of the nonlinear score
function from equation (6) translates to only one line of code.

In this code, the calculation of the expectation operator
is carried out using a matrix multiplication sign(Y) * Y’.
Using other programing languages this operation needs to
be computed using a further for-loop. Therefore, using a
single CPU, there are three major loops, with the innermost
one hidden in the high-level data types. Actually, this loop
needs the most of the computing power.

4. CUDA IMPLEMENTATION
4.1 CUDA Architecture

Before presenting the actual implementation, we first discuss
the major differences between the CPU and GPU program-
ing model. In Figure 3 a typical multi-core CPU model is
shown. It consists of independent compute cores with own
control logic and arithmetical-logical-unit (ALU). For speed-
ing up the random memory access there exist a huge cache.
On modern processors, this cache occupies up to half of the
CPU’s available transistors.

Figure 4 shows a typical GPU model. The major differ-
ence is the missing cache and a huge number of arithmetic
units. In contrast to a CPU, several arithmetic units are
controlled by just one control unit. This implicates, these
groups of arithmetic units have to perform the same opera-
tions in every step.

Without any cache, the algorithms have to be carefully
designed in order to access the memory in a regular and lin-
ear way. Even more, these access patterns have to be shared
across the single arithmetic units, so memory coalescing is
an important factor in every CUDA algorithm [21, 22]. In
order to reduce the memory bandwith, all arithmetic units
belonging to one control unit share a few thousand registers,
which are dynamically allocated to the single threads by the
runtime environment [22].

As discussed in the next section, there is a simple imple-
mentation of the frequency-domain ICA which meets all the
requirements of the CUDA architecture.

4.2 Implementation

The CUDA framework allows only an implementation in C or
C++4. Not all C++ class specific constructions are allowed,
as all class methods have to be inlined by the C++ compiler.
In order to calculate the ICA, classes representing complex

512

| Control | ALU | | Conwol | ALU |

‘ Control ‘ ALU ‘ ‘ Control ‘ ALU ‘

Cache

0

RAM

Figure 3: A typical 4-Core CPU model with independent
cores and huge cache.

Cul | ALU| ALU| ALU| ALU| ALU] ALU|

Cul [ALU| ALU| ALU| ALU| ALU]| ALU]

Cul | ALU| ALU| ALU[ALU| ALU] ALU|

Cul [ALU| ALU| ALU| ALU| ALU]| ALU]

0

RAM

Figure 4: A typical multi-core GPU model with many cou-
pled cores and no cache.

numbers (cuComplex), vectors (cu2dVector) and matrices
(cu2dMatrix) have to be implemented. Besides all standard
operations like addition, multiplication and absolute values,
the cu2dVector needs a method for calculating a Kronecker
product.

Using these classes the implementation of the kernel,
which is executed independently on each CUDA arithmetic
unit is very short, as shown in Figure 5.

Using this approach, a single kernel running on a sin-
gle arithmetic unit executes the ICA for one frequency bin.
Therefore the implementation lacks the outer for-loop, as
these assignments are performed with help of the CUDA
runtime environment. This is implemented in the first three
lines, and follows the pattern from [22]. At line 6, the loop
for the gradient descent is defined. The loop at the lines 8
to 11 is calculating the expectation value from equation (5).
Finally, at line 13 the remaining operations for the gradient
are executed. With C++ classes and overloaded operators,
the formulation is almost as convenient as in Matlab.

As already mentioned, the calculation of the expectation
operator is very time consuming. Fortunately, this calcula-
tion fits very good in the CUDA framework. In the case,
of a (2 x 2)-system, each iteration in the lines 8-11 needs to
access two complex values, which are stored consecutively
in four float variables and can be transported from RAM in
one operation. The calculation of the unmixed values, score
function, and Kronecker product needs 36 multiplications,
32 additions, four divisions, and two square roots. With this
high ratio of arithmetic operation to memory access, the sin-
gle threads only seldom interfere while fetching next values
and all arithmetic units are constantly occupied. Further-
more, the data for the individual frequency bins have the
same size and can be easily interleaved. Therefore, a full
coalesced access can be achieved [22].

When implementing this method as a mex-function for
Matlab, data formats have to be converted, as Matlab’s in-

1 __global__ void par_ica_2d(icaData *d) {

2 int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 if (tid < d->f_bins) {

4 cu2dMatrix W = (d->dev_w) [tid];

5 cuComplex inv_dp(1l.0f/(float)d->data_points);
6 for (int j=0; j < d->iterations; j++) {

7 cu2dMatrix tmp;

8 for (int i=0; i < d->data_points; i++) {

9 cu2dVect y = (W * d->data[tid + i*d->bins]);
10 tmp += (y.nonLinearF()).kProd(y.conj(Q);
1 }

12 cu2dMatrix I1(1,0,0,1);

13 W= (((II-Ctmp * inv_mlen)) * W) * d->mu) + W;
14 }

15 d->dev_w[tid] = W;

16 }

17 }

Figure 5: Kernel code for the time-frequency domain ICA
using CUDA framework.

ternal data organization is completely different. This trans-
formation usually is fast and unproblematic. The whole
source code with the mentioned Matlab connection is avail-
able at [23].

5. SIMULATIONS

For the simulations different implementations of the ICA al-
gorithms have been compared. The used data set from [24]
consists of approximately 7.5s of speech. The tests have been
performed using two and three speakers. The chosen param-
eters were a Hann window of length 2048, a window shift of
128, a FFT-length of 8192, and 200 iterations. Using these
parameters, there were 4097 discrete frequency bins with 456
data points.

The used hardware was an Intel Q6600 with 2.4GHz and
a Geforce 8800-GTS-512. Although this setup seems a little
outdated, it is very good comparable to current available
mobile hardware. Therefore, the results shown here, may be
used as an estimate for real implementations.

In Table 1 the results of the simulations with two speak-
ers are shown. At the first line the timings for the default
Matlab implementation are displayed. The time needed for
the separation was 123 seconds, which is approximately 17
times slower than real time. The next line shows a C++ im-
plementation which is the same code as used for the CUDA
implementation but executed on the CPU. Due to optimiza-
tions of the algorithm, it is approximately three times faster
than the previous one. The measurements are divided into
the setup time, which is needed for data conversion from the
internal Matlab structures, and the actual ICA. The next
two lines show the results when CUDA hardware is used.
The difference in the implementations is the non-coalesced
and coalesced memory access, which translates to a three
times speed up. In the last case, the overall performance is
40 times better than the C4++ and over 100 times faster than
the Matlab implementation.

The CUDA implementation is about six times faster than
real time in the (2 x 2)-case. Consequently, the remaining
time may be used for solving the permutation and scaling
problems and still achieve continuous processing.

The results for the (3 x 3)-case are quite similar, as shown
in Table 2. Overall, there is an increase of computation time
in the range of one and a half up to two times, which is due
to the 50% more data to be processed.

513

H Setup‘ ICA H Total ‘RT-ratio

Matlab - 123.60 123.6 16.93
C++ 0.19 43.34 43.5 5.96
CUDA-NC 0.19 3.01 3.2 0.44
CUDA-C 0.19 0.91 1.1 0.15

Table 1: Run time in seconds for the different implementa-
tions for a dataset with two speech sources of approximate
7.5s length. RT-ratio shows the normalized computation
time for a one second signal.

H Setup ‘ ICA H Total RT-ratio
Matlab - 181.79 181.79 24.90
C++ 0.28 82.94 83.22 11.40
CUDA-NC 0.28 6.43 6.71 0.92
CUDA-C 0.28 1.58 1.86 0.25

Table 2: Run time in seconds for the different implementa-
tions for a dataset with three speech sources of approximate
7.5s length.

6. CONCLUSIONS

In this paper we have proposed a CUDA implementation of
the independent component analysis in the time-frequency
domain. The ICA algorithm allows for an independent com-
putation in each discrete frequency bin, and therefore can
be easily adapted for the parallel CUDA architecture. The
speedup, compared to a default CPU implementation, is in
the order of two magnitudes. This new implementation al-
lows for real time processing.

(1]

2l

5]

(6]

(7l

(8]

REFERENCES

S.-I. Amari, A. Cichocki, and H. H. Yang. A new learn-
ing algorithm for blind signal separation. In Advances in

Neural Information Processing Systems, volume 8, MIT
Press, Cambridge, MA, 1996.

A. Hyvérinen and E. Oja. A fast fixed-point algorithm
for independent component analysis. Neural Computa-
tion, 9:1483-1492, 1997.

J.-F. Cardoso and A. Soulomiac. Blind beamforming
for non-Gaussian signals. Proc. Inst. Elec. Eng., pt. F.,
140(6):362—-370, Dec. 1993.

S. C. Douglas, H Sawada, and S. Makino. Natural gra-
dient multichannel blind deconvolution and speech sep-
aration using causal FIR filters. IEEE Trans. Speech
and Audio Processing, 13(1):92-104, Jan 2005.

R. Aichner, H. Buchner, S. Araki, and S. Makino. On-
line time-domain blind source separation of nonstation-
ary convolved signals. In Proc. 4th Int. Symp. on In-
dependent Component Analysis and Blind Signal Sep-
aration (ICA2003), pages 987-992, Nara, Japan, April
2003.

P. Smaragdis. Blind separation of convolved mixtures in
the frequency domain. Neurocomputing, 22(1-3):21-34,
1998.

H. Sawada, R. Mukai, S. Araki, and S. Makino. A ro-
bust and precise method for solving the permutation
problem of frequency-domain blind source separation.
IEEE Trans. Speech and Audio Processing, 12(5):530—
538, Sept. 2004.

R. Mukai, H. Sawada, S. Araki, and S. Makino. Blind
source separation of 3-d located many speech signals.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

[23]

24]

514

In 2005 IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, pages 9—12, Oct 2005.

R. Mazur and A. Mertins. An approach for solving the
permutation problem of convolutive blind source separa-
tion based on statistical signal models. IEEE Trans. Au-
dio, Speech, and Language Processing, 17(1):117-126,
Jan. 2009.

R. Mazur and A. Mertins. Simplified formulation of
a depermutation criterion in convolutive blind source
separation. In Proc. European Signal Processing Con-
ference, pages 1467-1470, Glasgow, Scotland, Aug 2009.

K. Rahbar and J. P. Reilly. A frequency domain
method for blind source separation of convolutive audio
mixtures. [EEE Trans. Speech and Audio Processing,
13(5):832-844, Sept. 2005.

S. Ikeda and N. Murata. A method of blind separation
based on temporal structure of signals. In Proc. Int.
Conf. on Neural Information Processing, pages 737-742,
1998.

K. Matsuoka. Minimal distortion principle for blind
source separation. In Proceedings of the 41st SICE An-
nual Conference, volume 4, pages 2138-2143, 5-7 Aug.
2002.

R. Mazur and A. Mertins. A method for filter shaping
in convolutive blind source separation. In Independent
Component Analysis and Signal Separation (ICA2009),
volume 5441 of LNCS, pages 282-289. Springer, 2009.

R. Mazur and A. Mertins. Using the scaling ambiguity
for filter shortening in convolutive blind source separa-
tion. In Proc. IEEE Int. Conf. Acoust., Speech, and Sig-
nal Processing, pages 1709-1712, Taipei, Taiwan, April
2009.

Francesco Nesta, Maurizio Omologo, and Piergiorgio
Svaizer. A bss method for short utterances by a re-
cursive solution to the permutation problem. In Sensor
Array and Multichannel Signal Processing Workshop,
SAM 2008, pages 357— 360, Darmstadt, Germany, July
2008.

http://www.nvidia.com/object/cuda_home_new.
html.

S. Choi, A. Cichocki, and S. Amari. Flexible indepen-
dent component analysis. In T. Constantinides, S. Y.
Kung, M. Niranjan, and E. Wilson, editors, Neural Net-
works for Signal Processing VIII, pages 83-92, 1998.

H. Brehm and W. Stammler. Description and genera-
tion of spherically invariant speech-model signals. Signal
Process., 12(2):119-141, 1987.

I. Lee, T. Kim, and T.-W. Lee. Independent vec-
tor analysis for convolutive blind speech separation.
In Blind Speech Separation, pages 169-192. Springer
Netherlands, 2007.

Jason Sanders and Edward Kandrot. CUDA by Ex-
ample: An Introduction to General-Purpose GPU Pro-
gramming. Addison-Wesley Professional, 1 edition, 7
2010.

David B. Kirk and Wen mei W. Hwu. Programming
Massively Parallel Processors: A Hands-on Approach
(Applications of GPU Computing Series). Morgan
Kaufmann, 1 edition, 2 2010.

http://www.isip.uni-luebeck.de/index.php?id=
479.

http://www.kecl.ntt.co.jp/icl/signal/sawada/
demo/bss2to4/index.html.

