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ABSTRACT

For constructing the support set of a sparse vector in the stan-
dard compressive sensing framework, we develop a hybrid
greedy pursuit algorithm that combines the advantages of
serial and parallel atom selection strategies. In an iterative
framework, the hybrid algorithm uses a joint sparsity infor-
mation extracted from the independent use of serial and par-
allel greedy pursuit algorithms. Through experimental evalu-
ations, the hybrid algorithm is shown to provide a significant
improvement for the support set recovery performance.

1. INTRODUCTION
The standard compressive sensing (CS) problem [1] is based
on a sparse signal model and uses an under-determined sys-
tem of linear equations. In the literature, a variety of CS
reconstruction algorithms have been developed based on
convex relaxation [2]-[3], non-convex [4]-[5] and iterative
greedy search [6]-[12] strategies. Among these methods,
convex relaxation based methods have attracted much atten-
tion due to their theoretical elegance and provable recovery
performance. In practice, convex relaxation based methods
are computationally intensive. On the other hand, the iter-
ative greedy search methods are of lower complexity and
hence their use may be practically viable in solving large-
dimensional CS problems.

From a measurement vector, the main principle of the
iterative greedy search methods is the estimation of the un-
derlying support set of a sparse vector. The support set is
the set of indices corresponding to non-zero elements of a
sparse vector. To estimate the support set, iterative greedy
search methods use linear algebraic tools (such as the inner-
product based matched filter and the pseudo-inverse based
least squares solution) iteratively. A better estimate of the
support set leads to reduction in the norm of least squares
error (or a fitting residual). The ability to estimate the sup-
port set from noisy measurements depends on an interplay
between several factors, including the sparse signal vector
dimension, measurement vector dimension, number of non-
zero elements (level of sparsity), and measurement noise
level.

Based on atom selection strategies for constructing a sup-
port set, iterative greedy search algorithms can be broadly
classified into two categories: serial and parallel. Prominent
examples of serial atom selection based greedy pursuits are
matching pursuit (MP) [6] and orthogonal matching pursuit
(OMP) [7]. The OMP is similar to MP with an additional as-
pect of least squares solution in each iteration, leading to sig-
nificant performance improvement over the MP. On the other
hand, the examples of parallel atom selection based greedy
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pursuits are subspace pursuit (SP) [11] and CoSaMP [10] (SP
and CoSaMP are almost similar algorithms).

Let us consider a set of greedy pursuit algorithms. As-
suming that all physical aspects remained same, an exper-
imental evaluation reveals that the performances of the al-
gorithms are input data dependent. For a particular in-
stance/realization, the algorithms may provide different per-
formance; it may happen that OMP provides better perfor-
mance than SP or vice-versa. In this paper, considering the
data dependent behaviors, we develop a hybrid greedy pur-
suit (HGP) algorithm by combining the serial atom selection
based OMP and the parallel atom selection based SP. In an
iterative framework, we execute both the algorithms simul-
taneously to extract the joint sparsity information. Here, the
joint sparsity information is referred to as evaluating a joint
support set; the joint support set is defined as the common
support set provided by both the OMP and SP algorithms.
In the iterative framework, the use of joint sparsity informa-
tion helps to provide a better support set estimation when the
developed HGP algorithm converges. Through experimen-
tal evaluations, we show a significant improvement than the
OMP and SP algorithms.

Notations: Let A∈R
M×N , x∈R

N , and I ⊂{1,2, . . . ,N}.

The matrix AI ∈ R
M×|I| consists of the columns of A with

indices i ∈ I, and xI ∈R
|I| is composed of the components of

x indexed by i ∈ I. We denote I as the compliment of set I.
Also we denote (.)t and (.)† as transpose and pseudo-inverse
respectively.

2. COMPRESSIVE SENSING AND
GREEDY PURSUITS

In this section, we first discuss about the CS problem and
then discuss two existing greedy pursuit algorithms (OMP
and SP) briefly. Let us state the standard CS problem where
we acquire a K-sparse signal x ∈ R

N via the linear measure-
ments

y =Ax+w, (1)

where A ∈ R
M×N is a matrix representing the sensing sys-

tem, y ∈ R
M represents a vector of measurements and

w ∈ R
M is additive noise representing measurement errors.

A K-sparse signal vector consists of at most K non-zero
scalar components. With the setup of K < M < N (under-
determined system of linear equations), the task is to recon-
struct x from y as x̂. Naturally the objective is to strive for a
reduced number of measurements as well as achieving good
reconstruction quality. Note that, in practice, we may wish
to acquire a signal x that is sparse in a known orthonormal
basis and the concerned problem can be easily recast as (1).
A column of A is also called an ‘atom’ in the literature.
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For the signal vector x= [x1, x2, . . . ,xN ]
t
, the support set

Ix ⊂ {1,2, . . . ,N} is defined as Ix = {i : xi 6= 0}. For a K-

sparse vector x ∈ R
N , |Ix| = ‖x‖0 ≤ K. In this paper, we

assume that |Ix|= K. Denoting the i’th column (atom) of the
measurement matrix A as ai, note that

y =Ax+w = ∑
i∈Ix

xiai +w =AIx xIx +w. (2)

From y, if the underlying support set (containing the indices
of atoms that are linearly combined) of cardinality K can be
identified, then we can estimate the non-zero values of x us-
ing the standard least square (LS) solution (as K <M, we can
use pseudo-inverse). Therefore, a better estimate of support
set leads to a better reconstruction performance.

Next we consider the question of how to construct the
sensing matrix A ∈ R

M×N . While it is possible to obtain
deterministic constructions of A =

{

ai, j

}

holding a specific
structure, at present the most efficient designs (i.e., those re-
quiring minimum number of rows) rely on random matrix
constructions where the ai, j’s are assumed realizations of in-
dependent and identically distributed (i.i.d.) random vari-
ables. A standard method is to draw ai, j’s independently

from a Gaussian source (i.e., ai, j ∼ N
(

0, 1
M

)

) and then to
scale the columns of A as unit-norm [8].

Having introduced the basics of CS, we now discuss
two existing greedy pursuit algorithms, OMP and SP, with a
slight modification in the next subsections. We introduce the
modification such that the algorithms become better suited
for developing the hybrid greedy pursuit (HGP) algorithm
later. The new modification is that the OMP and SP algo-
rithms can use an initial support set information.

2.1 Serial atom selection in OMP
Let us discuss the serial atom selection based OMP algorithm
with the supply of an initial support set. We summarize the
main steps of the OMP algorithm below.

(OMP for CS Recovery)
Inputs: A= [a1 a2 . . .aN ], measurement y, sparsity level K,
initial support set Iini where |Iini| ≤ K.
Initialization:

k = |Iini|; (• Set the iteration counter variable)
Ik = Iini;

x̂Ik =A
†
Ik
y; x̂Ik

= 0; (• LS solution: Pseudo-inverse)

rk = y−AIk x̂Ik ; (• Initial residual)

Iterations:

repeat
k = k+1;
ik = index of the highest amplitude component

of Atrk−1 such that ik 6∈ Ik−1; (• Matched filter)
Ik = Ik−1 ∪ ik; (• Note: |Ik|= k.)

x̂Ik =A
†
Ik
y; x̂Ik

= 0; (• LS solution: Pseudo-inverse)

rk = y−AIk x̂Ik ; (• Residual)
until ((‖rk‖2 > ‖rk−1‖2) or (k > K))
k = k−1; (• Previous iteration count)

Outputs: x̂(omp) (satisfying x̂
(omp)
Ik

=A
†
Ik
y and x̂

(omp)

Ik
= 0);

Î(omp) = Ik; r(omp) = rk.

The OMP algorithm starts with an initial support set Iini.
We set the iteration counter variable k = |Iini| and then set the
initial residual according to the LS fit. At the k’th iteration

stage, the algorithm uses the ‘matched filter’ Atrk−1 output,
identifies the new coordinate (corresponding to an atom) with
highest amplitude, solves a LS problem with the selected co-
ordinates, subtracts the LS fit and produces a new residual.
Such an approach generally leads to the observation that the
residual norm reduces over the iterations obeying the rule
‖rk‖2 ≤ ‖rk−1‖2. In the case when the rule is violated, the it-

erative loop is terminated. Therefore |Î(omp)| ≤ K. Given the
sparsity level K, the algorithm usually executes K iterations
and forms a support set of cardinality K at the end. Note that
the support set cardinality is increased one-by-one through
identifying a new atom in each iteration; this is a serial (or
sequential) approach for atom selection. An important point
to note that once an element is deemed reliable in an itera-
tion, the element is added to the support set and remains in
the support set forever. We mention that the existing standard
OMP algorithm [7] starts with a null support set, i.e., Iini = /0.

2.2 Parallel atom selection in SP
Next we summarize the main steps of the parallel atom selec-
tion based SP algorithm below where an initial support set is
also supplied.

(SP for CS Recovery)
Inputs: A, y, K, Iini where |Iini| ≤ K.
Initialization:

x̂Iini
=A

†
Iini
y; x̂Iini

=0; (• LS solution: Pseudo-inverse)

rini = y−AIini
x̂Iini

; (• Residual)
J = indices of the (K −|Iini|) highest amplitude

components of Atrini such that Iini ∩ J = /0;
I0 = Iini ∪ J; (• Note: |I0|= K.)

x̂I0 =A
†
I0
y; x̂I0

=0; (• LS solution: Pseudo-inverse)

r0 = y−AI0 x̂I0 ;
k = 0; (• Set the iteration counter variable)

Iterations:

repeat
k = k+1;
J = Ik−1 ∪{indices of the K highest amplitude

components of Atrk−1};

x̂J =A
†
Jy; x̂J = 0; (• LS solution: Pseudo-inverse)

Ik = indices of the K highest amplitude components
of x̂;

x̂Ik =A
†
Ik
y; x̂Ik

= 0; (• LS solution: Pseudo-inverse)

rk = y−AIk x̂Ik ;
until (‖rk‖2 > ‖rk−1‖2)
k = k−1; (• Previous iteration count)

Outputs: x̂(sp) (satisfying x̂
(sp)
Ik

= A
†
Ik
y and x̂

(sp)

Ik
= 0);

Î(sp) = Ik; r(sp) = rk.

The SP algorithm starts with an initial support set Iini

where |Iini| ≤ K. Then it evaluates the initial residual and
finds the (K −|Iini|) elements through using a matched filter
to form a K-element support set I0 and corresponding resid-
ual r0 = y−AI0 x̂I0 . At the k’th iteration stage, it uses the
‘matched filter’ Atrk−1 output, identifies the K highest am-
plitude coordinates, forms a dummy support set J satisfy-
ing K ≤ |J| ≤ 2K, refines out K-element support set Ik from
J, solves a LS problem with the selected coordinates in Ik,
subtracts the LS fit and produces a new residual. Given the
sparsity level K, the algorithm usually iterates until the resid-
ual minimization condition (over the iterations) is violated
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and estimates a support set of cardinality K in each iteration.
Note that, as in the case of OMP, the support set cardinality
is not increased one-by-one through iterations. Rather, a K-
element support set is refined through iterations by addition
of promising new atoms and deletion of unnecessary atoms.
This procedure of atom selection is different from the OMP.
Note that such a parallel atom selection strategy allows ad-
dition/deletion of atom-indices to/from the support set. We
mention that the existing standard SP algorithm [11] starts
with a null support set, i.e., Iini = /0.

3. HYBRID GREEDY PURSUIT
In this section, we develop the hybrid greedy pursuit (HGP)
algorithm. For developing the HGP algorithm, we first need
to define two functions. The functions execute the OMP and
SP algorithms supplied with an initial support set.

For the OMP algorithm, the corresponding function is
defined as

Function 1 (OMP) Let y ∈ R
M , A ∈ R

M×N and K is the
sparsity level. Suppose that the initial support set is Iini

(where |Iini| ≤ K). Then, using A, y, K and Iini, let us de-
fine the following algorithmic function

[x̂(omp), Î(omp), r(omp)] = OMP(A,y,K, Iini) , (3)

where the outputs are the estimated signal x̂(omp) ∈ R
N , its

support set Î(omp) (where |Î(omp)| ≤ K), and corresponding

residual r(omp) ∈ R
M . Here the above function exactly exe-

cutes the algorithm “OMP” shown in section 2.1.

In the same manner, for the SP algorithm, the corre-
sponding function is defined as

Function 2 (SP) Let y ∈ R
M , A ∈R

M×N and K is the spar-
sity level. Suppose that the initial support set is Iini (where
|Iini| ≤ K). Then, using A, y, K and Iini, let us define the
following algorithmic function

[x̂(sp), Î(sp), r(sp)] = SP(A,y,K, Iini) , (4)

where the outputs are the estimated signal x̂(sp) ∈ R
N , its

support set Î(sp) (where |Î(sp)| = K), and corresponding

residual r(sp) ∈ R
M . Here the above function exactly exe-

cutes the algorithm “SP” shown in section 2.2.

Using the above definitions, we now develop the HGP
algorithm. The main steps of the HGP algorithm are summa-
rized below.

(HGP for CS Recovery)
Inputs: A, y, K.
Initialization:

x̂0 = 0, r0 = y, I0 = /0;
J0 = /0; (• To keep joint sparsity information)
k = 0; (• Set the iteration counter variable)

Iterations:

repeat
k = k+1;
[

x̂(omp), Î(omp),r(omp)
]

=OMP(A,y,K,Jk−1);
[

x̂(sp), Î(sp), r(sp)
]

= SP(A,y,K,Jk−1);

Jk = Î(omp)∩ Î(sp); (• Joint support estimation)

(• Next: Choice of best algorithm using if-else)

if (‖r(omp)‖2 ≤ ‖r(sp)‖2) then

x̂k = x̂(omp), Îk = I(omp), rk = r(omp);
else

x̂k = x̂(sp), Îk = I(sp), rk = r(sp);
end if

until (‖rk‖2 ≥ ‖rk−1‖2)
k = k−1; (• Previous iteration count)

Outputs: x̂(hgp) = x̂k, Î(hgp) = Ik, r(hgp) = rk.

In the HGP algorithm, both the OMP and SP algorithms
are executed. The OMP and SP algorithms estimate the un-
derlying support set independently. We find the joint support
set information from the estimated two individual support
sets and use the joint support set information in an iterative
loop. For each iteration, we choose the best performing algo-
rithm between the two competing (OMP and SP) algorithms
on the basis of providing minimum residual norm and set the
HGP algorithm parameters accordingly. The HGP loop it-
eration starts with an empty joint support set J0 = /0. Then,
through the iterations, the joint support set is improved in
such a way that the overall fitting residual decreases. Here,
the joint support set is referred to as the common support set
provided by both the OMP and SP algorithms. In practice,
the joint support set is evaluated as the intersection between
two support sets provided by OMP and SP algorithms. For
the HGP algorithm, the iteration loop stops when the residual
norm shows non-decreasing behavior. The non-decreasing
behavior ensures convergence in case the joint support set is
not improved further.

A natural observation is that the proposed HGP algorithm
is computationally more demanding than the individual OMP
and SP algorithms. The HGP will at-least have a computa-
tional complexity which is more than the added complexity
of OMP and SP algorithms. In the backdrop of HGP, let us
considering another simple non-iterative scheme where the
joint support set is not used, but the decision is only made
on the basis of residual norms corresponding to OMP and
SP methods. That means, we execute both the OMP and SP
algorithms once, but choose the solution of the OMP algo-
rithm if the OMP residual norm is lower than the SP residual
norm or vise versa. The algorithm can be seen as the HGP
algorithm where the iteration is performed only once. Let
us refer to such an algorithm as HGP-1 (‘1’ corresponds to
only one iteration allowed.). It is interesting to observe the
performance of HGP-1 algorithm and compare with the HGP
algorithm.

An important point is that here we develop the HGP al-
gorithm using only two greedy pursuit algorithms: OMP and
SP. However, in the same algorithmic structure of HGP, it
may be possible to use several other existing greedy pursuit
algorithms (along-with SP and OMP) if those algorithms can
be modified to use a joint sparsity information. That means,
those algorithms require to use a joint support set as the ini-
tial support set . For example, the standard CoSaMP [10]
may be modified to use a joint support set.

4. EXPERIMENTS AND RESULTS

We performed computer simulations in order to compare the
performance of four CS reconstruction algorithms: OMP, SP,
HGP and HGP-1. We first discuss the reconstruction perfor-
mance measure and experimental setups, and then show the
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Figure 1: Signal-to-reconstruction-noise error (SRNR) versus fraction of measurements (α). The performances are shown for
clean measurement and noisy measurement (with SMNR=20 dB).

experimental results for both clean and noisy setups.

4.1 Performance measure and experimental setups
We use two performance measures. For the first performance
measure, we use signal-to-reconstruction-noise ratio (SRNR)
defined as

SRNR =
E {‖x‖2

2}

E {‖x− x̂‖2
2}

, (5)

where x̂ is the reconstruction of the signal x using a CS
method. Next we define another performance measure which
provides a direct measure of estimating the underlying sup-
port set. For a K-sparse signal vector x, the support set was
denoted as Ix with cardinality K. Let us denote the sup-
port set of reconstructed vector x̂ as Ix̂. We assume that x̂
is also a K-sparse signal vector, i.e. |Ix̂| = K. To compare
the methods, we consider to use the distortion d(Ix, Ix̂) =
1− (|Ix∩ Ix̂|/K) to measure errors [13]. Considering a large
number of realizations (data vectors), we can compute the av-
erage of d(Ix, Ix̂). We define the average support-cardinality
error (ASCE) as follows

ASCE = E {d(Ix, Ix̂)}= 1−
1

K
E {|Ix∩ Ix̂|} . (6)

Along-with SRNR, the ASCE is used as the second perfor-
mance evaluation measure because our main objective is to
estimate the underlying support set.

Next we discuss experimental setups. In a CS setup, all
sparse signal vectors are expected to be exactly reconstructed
if the number of measurements is more than a certain thresh-
old value. However, the computational complexity to test
this uniform reconstruction ability is exponentially high. In-
stead, for empirical testing, we can devise a strategy that can
compute SRNR and ASCE for random measurement matrix
ensemble. Let us define the fraction of measurements (FoM)

α =
M

N
. (7)

Using α , steps of the testing strategy are listed as follows:

1. For given values of the parameters K and N, choose α
such that number of measurements M is an integer.

2. Randomly generate an M × N sensing matrix where
the components are drawn independently from a Gaus-

sian source (i.e., ai, j ∼ N
(

0, 1
M

)

) and then to scale the
columns of A as unit-norm.

3. Randomly generate a set of K-sparse data where the sup-
port set Ix is chosen uniformly over the set {1,2, . . . ,N}.
Let we denote the size of data as S (i.e. the number of
signal vectors is S). The non-zero components of x are
independently drawn from a standard Gaussian source.
This type of signal is referred to as Gaussian sparse sig-
nal. Note that the Gaussian sparse signal is compress-
ible in nature. That means, in the descending order, the
sorted amplitudes of a sparse signal vector’s components
decay fast with respect to the sorted indices. This decay-
ing trend corroborates with several natural signals (for
example, wavelet coefficients of an image).

4. For each data, compute the measurement y = Ax+w
and apply the CS reconstruction methods independently.
Here we assume that the measurement noise w ∈R

M has
a multidimensional pdf as w ∼ N

(

0,σ2
wIM

)

, where IM

is an M×M identity matrix.

5. Repeat steps 2-4 for a given times (let T times).
Then evaluate the CS performance evaluation measures:
SRNR and ASCE (averaging over ST data).

6. Repeat steps 1-5 for a new α .

This testing strategy can be performed for any chosen K and
N.

Now we define the signal-to-measurement-noise-ratio
(SMNR) as

SMNR =
E {‖x‖2

2}

E {‖w‖2
2}

. (8)

4.2 Experimental results

Using N = 500, K = 20, S = 100 and T = 100, we performed
experiments. That means, we used 500-dimensional sparse
signal vectors with sparsity level K = 20. Such a 4% sparsity
level is chosen in accordance with real life scenarios, such as
most of the energy of an image signal in the wavelet domain
is concentrated within 2−4% coefficients. We used 100 real-
izations of A (T = 100). For each realization of A, we used
100 signal vectors that are randomly generated (S = 100).
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Figure 2: Average support-cardinality error (ASCE) versus fraction of measurements (α). The performances are shown for
clean measurement and noisy measurement (with SMNR=20 dB).

Then, we incremented α from a lower limit to a higher limit
using some small step-sizes (with the constraint that corre-
sponding M is an integer for a value of α). Therefore, for
each CS method at a chosen α , the performance is evaluated
through averaging over 100×100 = 10000 realizations.

Fig. (1) shows the SRNR performance (in dB) of CS re-
construction methods for both clean and noisy measurement
conditions. In case of the noisy measurement, we choose the
SMNR=20 dB. We show the results for the range of α from
0.1 to 0.2. This range of α corresponds to the range of M
from M = 50 to M = 100. We observe that the HGP-1 shows
better performance than the OMP and SP methods and HGP
is found to be the best. For the clean measurement case, the
HGP shows considerable improvement over HGP-1 as the
number of measurements increases. In the range α = 0.16
to 0.2, the HGP provides more than 4 dB improvement com-
pared to the HGP-1. Compared to the OMP and SP methods,
the HGP provides significant improvement (more than 10 dB
in the range 0.16 < α ≤ 0.2). For the noisy measurement
case, the HGP provides more than 2 dB improvement than
the HGP-1 in the range α = 0.14 to 0.18. Compared to the
OMP and SP methods, the HGP provides a significant im-
provement (nearly 5 dB in the range 0.14 ≤ α ≤ 0.18).

Next we show the ASCE performance of CS reconstruc-
tion methods in Fig. (2). We note that the HGP provides
the best performance. For clean measurement, the HGP al-
gorithm provides nearly zero ASCE distortion for the range
α ≥ 0.17. On the other hand, for the noisy case, the ASCE
gradually reduces and maintains a nearly saturated behavior
for the range α ≥ 0.18.

5. CONCLUSIONS
In an iterative framework, we have shown that simultaneous
use of greedy pursuit algorithms leads to better compressive
sensing recovery performance through exploiting joint spar-
sity information. At the expense of higher computational
complexity, such an engineering approach has a similarity
with a universal source coding method [14], [15], where sev-
eral coders are jointly used to provide better quantization per-
formance.
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