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ABSTRACT

UW-OFDM (unique word – orthogonal frequency division multi-
plexing) is a novel OFDM signaling concept, where the guard inter-
val is built of a deterministic sequence – the so-called unique word
– instead of the conventional random cyclic prefix. In contrast to
previous attempts with deterministic sequences in the guard inter-
val, the addressed UW-OFDM signaling approach introduces cor-
relations between the subcarrier symbols, which can be exploited
by the receiver in order to improve the bit error ratio performance.
In this paper we develop several linear data estimators specifically
designed for UW-OFDM, based on classical as well as on Bayesian
estimation theory. We evaluate the estimators’ performance for the
additive white Gaussian noise channel and for selected indoor mul-
tipath channel scenarios.

1. INTRODUCTION

In [1], [2] we introduced an OFDM signaling scheme, where the
usual cyclic prefixes (CP) are replaced by deterministic sequences,
that we call unique words (UW). A related but – when regarded in
detail – also very different scheme is KSP (known symbol padded)-
OFDM [3], [4]. Fig. 1 compares the CP-, KSP-, and UW-based
OFDM transmit data structures.

CP1 Data CP1 CP2 Data CP2 CP3 · · ·

TGI TDF T TDF T

(a) Data structure using CPs

KS Data KS Data KS · · ·

(b) Data structure using KSP

UW Data UW Data UW · · ·

TGI TDF T TDF T

(c) Data structure using UWs

Figure 1: Transmit data structure using CPs, KSs or UWs.

In CP- as well as in UW-OFDM the linear convolution of the
transmit signal with the channel impulse response is transformed
into a cyclic convolution. However, there are some fundamental
differences between the CP-based and the UW-based approach:

• Different to the CP, the UW is part of the DFT (discrete Fourier
transform)-interval as indicated in Fig. 1.

• The CP is a random sequence, whereas the UW is deterministic.
Thus, the UW can optimally be designed for particular needs
like synchronization and/or channel estimation purposes at the
receiver side.
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The broadly known KSP-OFDM uses a structure similar to
UW-OFDM, since the known symbol (KS) sequence is determinis-
tic as well. The most important difference between KSP- and UW-
OFDM is the fact, that the UW is part of the DFT interval, whereas
the KS is not. On the one hand this characteristic of the UW im-
plies the cyclic convolution property addressed above, and on the
other hand, but no less importantly, the insertion of the UW within
the DFT-interval introduces correlations in the frequency domain,
which can advantageously be exploited by the receiver to improve
the BER (bit error ratio) performance. Whilst in both schemes the
deterministic sequences can be used for synchronization and chan-
nel estimation purposes, KSP-OFDM does not feature these correla-
tions. We notice that KSP-OFDM coincides with ZP-OFDM (zero
padded OFDM), if the KS sequence is set to zero.

In our concept described in [1] we suggested to generate UW-
OFDM symbols by appropriately loading so-called redundant sub-
carriers. The minimization of the energy contribution of the redun-
dant subcarriers turned out to be a challenge. We solved the problem
by generating a zero UW in a first step, and by adding the desired
UW in a separate second step. We showed that this approach gen-
erates OFDM symbols with much less redundant energy [2] than a
single step or direct UW generation approach as e.g. described in
[5]. Additionally, we optimized the positions of the redundant sub-
carriers to further reduce their energy contribution. We notice, that
the concept in [5] generates completely different OFDM symbols
compared to our approach in [1], and it has to deal with extremely
high symbol energies and with the fact, that the performance de-
pends on the particular shape of the UW. This is clearly in con-
trast to our approach, where the BER performance is independent
of the particular shape of the UW due to the two-step generation
approach. The BER behavior only depends on the freely selectable
UW energy.

In this paper, we extend our results in [1], [2] by investigating
several different linear data estimation concepts by applying meth-
ods from classical and Bayesian estimation theory. The paper is
organized as follows: In Sec. 2 we briefly review the procedure of
the unique word generation. The system model and some useful
preparatory steps for the data estimation will be detailed in Sec. 3.
Next we derive data estimators for UW-OFDM using classical es-
timation theory approaches in Sec. 4 which leads to ZF (zero forc-
ing) equalizer concepts. Then, in Sec. 5 the linear Bayesian MMSE
estimator is regarded. Finally, in Sec. 6 we highlight the BER per-
formance of the introduced methods in the AWGN (additive white
Gaussian noise) channel and in frequency selective indoor multipath
environments. We conclude our work in Sec. 7.

Notation: Lower-case bold face variables (a,b,. . . ) indicate vec-
tors, and upper-case bold face variables (A,B,. . . ) indicate matri-
ces. To distinguish between time and frequency domain variables,
we use a tilde to express frequency domain vectors and matrices

(ã,Ã,. . . ), respectively. We further use C to denote the set of com-

plex numbers, I to denote the identity matrix, (·)T to denote trans-

position, (·)H to denote conjugate transposition, E[·] to denote ex-
pectation, and tr(·) to denote the trace operator. For all signals and
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systems the usual equivalent complex baseband representation is
applied.

2. REVIEW OF UW-OFDM: UNIQUE WORD
GENERATION

We briefly review our approach of introducing unique words in
OFDM time domain symbols, for further details see [1], [2]. Let

xu ∈ CNu×1 be a predefined sequence which we call unique word.
This unique word shall form the tail of each OFDM time do-

main symbol vector x =
[
xT

d xT
u

]T
∈ CN×1, where only xd ∈

C(N−Nu)×1 is random and affected by the data. In the concept sug-

gested in [1], [2] we generate an OFDM symbol x =
[
xT

d 0T
]T

with a zero UW in a first step, and we determine the final trans-

mit symbol x′ = x +
[
0T xT

u

]T
by adding the desired UW in

time domain in a second step. As in conventional OFDM, the

QAM data symbols (denoted by the vector d̃ ∈ CNd×1) and the
zero subcarriers (at the band edges and at DC) are specified in
frequency domain as part of the vector x̃, but here in addition
the zero-word is specified in time domain as part of the vector

x = F−1
N x̃. Here, FN denotes the length-N DFT matrix with el-

ements [FN ]kl = e−j 2π
N

kl for k, l = 0,1, ...,N − 1. The system of

equations x= F−1
N x̃ with the introduced features can be fulfilled by

spending some data subcarriers and instead introducing a set of re-
dundant subcarriers. We let the redundant subcarrier symbols form

the vector r̃ ∈ CNr×1 with Nr = Nu, we further introduce a permu-

tation matrix P ∈ C
(Nd+Nr)×(Nd+Nr), and form an OFDM symbol

(containing N −Nd −Nr zero subcarriers) in frequency domain by

x̃ = BP
[
d̃

r̃

]
. Here, B ∈ C

N×(Nd+Nr) models the insertion of the

zero subcarrier symbols. We will detail the reason for the intro-
duction of the permutation matrix P and its specific construction

shortly below. The time–frequency relation F−1
N x̃ = x can now be

written as

F−1
N BP

[
d̃
r̃

]
=

[
xd

0

]
. (1)

With M=F−1
N BP =

[
M11 M12

M21 M22

]
, where Mkl are appropriate sized

sub-matrices, it follows that M21d̃ + M22r̃ = 0, and hence r̃ =
−M−1

22 M21d̃. With the matrix T = −M−1
22 M21 ∈ CNr×Nd , the

vector of redundant subcarrier symbols can thus be determined by

the linear mapping r̃= Td̃. The construction of T and thus also the
energy of the redundant subcarrier symbols highly depend on the
choice of P. In [1] we suggested to choose P by a minimization of
the symbol energy Ex′ which leads to the optimization problem P=
argmin

{
tr(TTH)

}
. In Sec. 6 we give an example of the optimum

redundant subcarrier distribution for a specific parameter setup.

In the following, we use the notation c̃ with

c̃ = P

[
d̃
r̃

]
= P

[
I
T

]
d̃ = Gd̃, (2)

where the matrix G = P
[
I TT

]T
∈ C(Nd+Nr)×Nd can be inter-

preted as a code generator matrix for a systematic complex valued
Reed Solomon code, that generates the code words c̃. With (2) and

the frequency domain version of the UW x̃u = FN [0 xu]
T

, the

transmit symbol can now be written as x′ = F−1
N (BGd̃+ x̃u).

3. SYSTEM MODEL AND PREPARATORY STEPS

After the transmission over a dispersive (e.g. multipath) channel,
applying a DFT and discarding the zero subcarriers, the received

OFDM frequency domain symbol ỹd ∈C(Nd+Nr)×1 can be modeled
as

ỹd = BT FNHcF
−1
N (BGd̃+ x̃u)+BT FNn, (3)

where n ∈ CN×1 represents a zero-mean Gaussian (time domain)

noise vector with the covariance matrix σ2
n I, and Hc ∈ C

N×N

denotes a cyclic convolution matrix originating from the zero-

padded vector of channel impulse response coefficients hc ∈ C
N×1.

With the downsized diagonal matrix H̃d = BTFNHcF
−1
N B (H̃d ∈

C(Nd+Nr)×(Nd+Nr)) containing the channel frequency response sam-
ples corresponding to the data and redundant subcarrier positions,
the received symbol can now be written in the form of the affine
model

ỹd = H̃dGd̃+H̃dB
T x̃u +BT FNn. (4)

Note that (assuming that the channel matrix H̃d or at least an esti-

mate of it is available) H̃dB
T x̃u represents the known portion con-

tained in the received vector ỹd originating from the UW. As a first
preparatory step we therefore subtract the UW influence to obtain
the corrected symbol in the form of the linear model

ỹ = ỹd −H̃dB
T x̃u (5)

= H̃dGd̃+ ṽ, (6)

with the noise vector ṽ = BTFNn.

4. CLASSICAL DATA ESTIMATORS – ZERO FORCING
SOLUTIONS

In this section we consider classical unbiased data estimators of the
form

̂̃
d = Eỹ, (7)

where E ∈ CNd×(Nd+Nr) describes the equalizer. Note that in clas-
sical estimation the data vector is assumed to be deterministic but
unknown. In order for the estimator to be unbiased we require

E[
̂̃
d] = E[Eỹ]

= EE[H̃dGd̃+ ṽ]

= EH̃dGd̃

= d̃.

Consequently, the unbiased constraint takes on the form

EH̃dG = I, (8)

which is equivalent to the ZF criterion for linear equalizers. The
solution to (8) is ambiguous. To show this we consider a singular

value decomposition of H̃dG as

H̃dG = U

[
Σ
0

]
VH , (9)

with unitary matrices U and V, and with the diagonal matrix Σ

having as its main diagonal the singular values of H̃dG. With (9)
the unbiased constraint (or ZF criterion) (8) can be re-written as

EU

[
Σ
0

]
VH = I. (10)

It is easy to see that (10) and therefore also (8) is fulfilled by every
equalizer of the form

E = V
[
Σ−1 A

]
UH (11)

with arbitrary A.

Since the solution to the unbiased constraint is not unambigu-
ous it makes sense to look for the optimum solution which is com-
monly known as the best linear unbiased estimator.
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4.1 Best Linear Unbiased Estimator (BLUE)

By applying the Gauss-Markov theorem [6] to (6) the BLUE and
consequently the optimum ZF equalizer (EBLUE = EZF,opt) follows
to

EBLUE = (GHH̃H
d C−1

ṽṽ H̃dG)−1GHH̃H
d C−1

ṽṽ . (12)

We note that since the noise in (6) is assumed to be Gaussian, (12)
is also the MVU (minimum variance unbiased) estimator. With the
noise covariance matrix Cṽṽ = E

[
ṽṽH

]
= Nσ2

n I we immediately
obtain

EBLUE = (GHH̃H
d H̃dG)−1GHH̃H

d . (13)

The covariance matrix of
̂̃
d = EBLUEỹ, or equivalently the covari-

ance matrix of the error ẽ = d̃−
̂̃
d is given by

Cẽẽ = Nσ2
n (GHH̃H

d H̃dG)−1, (14)

cf. [6].

To conclude this section we will depict the interrelationship be-
tween EBLUE and the solution in (11). EBLUE as given in (13)

represents nothing but the Moore-Penrose pseudoinverse of H̃dG.
By using the singular value decomposition as in (9), (13) can be
re-written as

EBLUE = (V
[
ΣH 0

]
UHU

[
Σ
0

]
VH )−1V

[
ΣH 0

]
UH

= (VΣHΣVH)−1V
[
ΣH 0

]
UH

= V(ΣHΣ)−1VHV
[
ΣH 0

]
UH

= V
[
(ΣHΣ)−1ΣH 0

]
UH

= V
[
Σ−1 0

]
UH . (15)

By comparing this result with (11) it can be concluded that EBLUE

corresponds to the solution in (11) for the particular case A = 0.

4.2 Sub-Optimum ZF Receiver Structures

Any unbiased linear data estimator, or equivalently, any linear zero
forcing equalizer has to fulfill (8). As already shown above the
ZF solution is ambiguous for the UW-OFDM transmission model
described in (6). Another quite intuitive and straight forward ZF
solution is given by

ECI = [I 0]PT H̃−1
d

= H̃−1
d,1 [I 0]PT . (16)

This equalizer extracts at first the data subcarriers and then inverts

the channel on these subcarriers. Here, H̃d,1 is a matrix that con-
tains on its main diagonal the channel frequency response samples
corresponding to the data subcarriers. Clearly this procedure fulfills
(8). In the following we will refer to this equalizer as the channel
inversion (CI) receiver. The channel inversion receiver represents

a low complex solution since H̃d,1 has a diagonal structure, but it
does not take advantage of the correlations introduced by G at the

transmitter side. The covariance matrix of
̂̃
d = ECIỹ, or equiva-

lently the covariance matrix of the error ẽ = d̃−
̂̃
d can easily shown

to be
Cẽẽ = Nσ2

n ECIE
H
CI = Nσ2

n (H̃H
d,1H̃d,1)

−1. (17)

Next we address another quite intuitive equalizer that exploits a-
priori knowledge, namely, that the samples within the guard interval
of an OFDM symbol must be zero after the channel inversion in
the noiseless case (given that the influence of x̃u has already been
subtracted as indicated in (5)). In the presence of noise we therefore
simply force the guard interval samples to zero which is achieved
by an equalizer of the form

ETDW = [I 0]PT BTFNΘF−1
N BH̃−1

d
, (18)

where Θ =
[
I 0
0 0

]
. The time domain windowing (TDW) equalizer

starts with an inversion of the channel, next the zero subcarrier sym-
bols are added again in order to be able to transform back to time
domain with a length-N IDFT. Here a windowing (described by Θ)
takes place, where the guard interval samples are forced to zero.
Next a transformation back to frequency domain is performed, the
zero subcarriers are excluded again, a re-sorting is done, and finally
the data symbols are extracted. It can easily be shown, that ETDW

also fulfills (8). The covariance matrix of
̂̃
d = ETDWỹ, or equiva-

lently the covariance matrix of the error ẽ = d̃−
̂̃
d is given by

Cẽẽ = Nσ2
n ETDWEH

TDW. (19)

5. LINEAR BAYESIAN DATA ESTIMATOR – LMMSE
SOLUTION

We now turn to the widely used linear minimum mean square er-
ror data estimator which is derived with the help of the Bayesian
approach. In the Bayesian approach the data vector is assumed to
be the realization of a random vector instead of a deterministic and
unknown vector as in the classical estimation theory applied above.
By applying the Bayesian Gauss-Markov theorem [6] to (6), where

we now assume d̃ to be the realization of a random vector, and
assuming that Cd̃d̃ = σ2

d I and Cṽṽ = σ2
v I = Nσ2

n I, the LMMSE
equalizer follows to

ELMMSE = GH

(
GGH +

Nσ2
n

σ2
d

(H̃H
d H̃d)−1

)−1

H̃−1
d

. (20)

With the introduction of the Wiener smoothing matrix

W = GH

(
GGH +

Nσ2
n

σ2
d

(H̃H
d H̃d)−1

)−1

, (21)

the LMMSE equalizer can be written as ELMMSE = WH̃−1
d

, which
allows the following interpretation of its mode of operation: The
LMMSE equalizer acts as a composition of a simple channel in-

version stage (multiplication with H̃−1
d

as in (16)) and a Wiener
smoothing operation (multiplication with W). The Wiener smooth-
ing operation exploits the correlations between subcarrier symbols
which have been introduced by the redundant subcarriers at the
transmitter, and acts as a noise reduction operation on the subcarri-
ers. By applying the matrix inversion lemma, it can easily be shown
that the equalizer can equivalently be determined by

ELMMSE = (GHH̃H
d H̃dG+

Nσ2
n

σ2
d

I)−1GHH̃H
d . (22)

Expression (22) shows strong similarities to the optimum linear ZF

equalizer in (13). For σ2
n = 0 the LMMSE equalizer coincides with

the optimum linear ZF equalizer. The expression for Cẽẽ can be
shown to be

Cẽẽ = Nσ2
n (GHH̃H

d H̃dG+
Nσ2

n

σ2
d

I)−1. (23)

6. SIMULATION RESULTS

Fig. 2 shows the block diagram of the simulated UW-OFDM sys-
tem. The transmitter processing starts with (outer) channel cod-
ing, interleaving and QAM-mapping. We used the same outer con-
volutional encoder with the industry standard rate 1/2, constraint
length 7 code with generator polynomials (133, 171) as defined in
[7]. Next, the redundant subcarrier symbols are determined. After
assembling the OFDM symbol in frequency domain, which is com-

posed of d̃, r̃, and a set of zero subcarriers, the IFFT is computed.
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Finally, the UW is added in time domain. At the receiver side the
processing for one OFDM symbol starts with an FFT, then the in-
fluence of the UW is subtracted. Next the linear data estimation
is applied by using one of the introduced data estimation methods,
where we assumed perfect channel knowledge at the receiver. Fi-
nally demapping, deinterleaving and decoding are performed. A
soft decision Viterbi algorithm is applied for decoding. The main
diagonal of matrix Cẽẽ is used to specify the varying noise vari-
ances along the data symbols after data estimation.

binary
data
input Channel

Coding

Inter-

leaving

QAM

Mapping Redundant Subcarrier

Symbol Calculation

Assemble

OFDM Symbol
IFFT Add

UW

Channel

binary
data

output Channel

Decoding

Deinter-

leaving

QAM

Demapping

Linear Data

Estimation

Subtract UW

influence
FFT

Figure 2: Block diagram for simulation analysis.

In [1] we compared our UW-OFDM approach with the CP-
OFDM based IEEE 802.11a WLAN standard [7] and showed that
UW-OFDM outperforms CP-OFDM in frequency selective indoor
environments. Also in this work we use the same parameter setup
which is adapted to the 802.11a standard wherever possible: N =
64, sampling frequency fs = 20MHz, DFT period TDFT = 3.2µs ,
guard duration TGI = 800ns, QPSK as modulation scheme, subcar-
rier spacing ∆ f = 315.2 kHz, Nr = Nu = 16, Nd = 36. As in [7] the
indices of the zero subcarriers within an OFDM symbol x̃ are set
to {0, 27, 28,...,37}. The indices of the redundant subcarriers are
chosen to be {2, 6, 10, 14, 17, 21, 24, 26, 38, 40, 43, 47, 50, 54,
58, 62}. This set (which can also be expressed by an appropriate
permutation matrix P) minimizes the energy of the redundant sub-
carriers on average and has been obtained by a heuristic optimiza-
tion approach [8]. Since we focus on data estimation procedures
in this work rather than on synchronization or channel estimation
approaches we chose the zero UW for the BER simulations below.

6.1 Simulation Results in the AWGN Channel

Clearly, OFDM is designed for data transmission in frequency se-
lective environments. Nevertheless, we start our comparison with
simulation results in the AWGN channel, since these results pro-
vide first interesting insights. In Fig. 3 the BER performance of the
different data estimators is compared under AWGN conditions. As
in all following BER figures we present curves for the case when no
outer code is used (we label it ‘uncoded’ case in the figures), and

for an outer coding rate r = 1
2 .
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TDW

BLUE

LMMSE

coded
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Figure 3: BER performance of the data estimators in the AWGN
channel.

We start the discussion with the uncoded case: As expected
the CI estimator shows the worst performance, since it completely

ignores the information present on the redundant subcarriers. Sur-
prisingly, the very simple and intuitive TDW data estimator per-
forms almost as well as the BLUE and the LMMSE in the AWGN
environment. At a BER of 10−6 these three estimators which all
make use of the a-priori knowledge introduced by the zero UW out-
perform the CI estimator by around 1.5dB. The trend is similar for

r = 1
2 .

6.2 Simulation Results in Frequency Selective Indoor Environ-
ments

For the simulation of indoor multipath channels we applied the
model described in [9], which has also been used during the IEEE
802.11a standardization process. The channel impulse responses
are modeled as tapped delay lines, each tap with uniformly dis-
tributed phase and Rayleigh distributed magnitude, and with power
decaying exponentially. For illustration purposes we use two dif-
ferent channel snapshots in this section, each channel featuring a
delay spread of 100 ns, and a total duration not exceeding the guard
interval. The frequency responses are shown in Fig. 4. Channel A
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a
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 (

d
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Channel B

Figure 4: Frequency responses of multipath channel snapshots.

does not show any deep fading holes, whereas channel B features
two spectral notches within the system bandwidth, one at a data
subcarrier position, the other one at a redundant subcarrier position.

Let us first interpret the results for channel A, cf. Fig. 5. We
observe similar trends as in the AWGN case, but now the LMMSE
estimator and the BLUE clearly outperform the TDW estimator.
For uncoded transmission the TDW outperforms the CI estimator

by 1.9dB (again at a BER of 10−6), the BLUE and the LMMSE

estimator gain 2.8dB and 2.9dB, respectively. For r = 1
2 the cor-

responding gains shrink to 1.1dB, 1.5dB and 1.7dB, respectively.

Finally Fig. 6 shows the simulation results for channel B with
its deep spectral notches. The bad performance of the CI and the
TDW estimators in the uncoded transmission is very noticeable.
Here the performance gain of the BLUE and the LMMSE estimator
is significant. The performance of the CI estimator is dominated by
the weak BER behavior of data subcarrier symbols corresponding
to deep spectral notches in the channel frequency response, while
the LMMSE estimator (and similarly the BLUE) considerably de-
crease the noise on that subcarriers. (They decrease the noise vari-
ance on all subcarriers, but the effect is impressive on subcarriers
corresponding to deep spectral notches, cf. [1]). In coded transmis-
sion the performance loss of the CI estimator compared to the best
performing LMMSE estimator decreases to 1.4dB. The significant
improvement of the CI estimator in the coded case was expected as
this corresponds to the usual coding gain as it is also observed in
CP-OFDM. Somewhat unexpected, and in contrast to the uncoded
results and those in an AWGN channel and in channel A, the TDW
equalizer performs almost 0.9dB worse compared to the CI equal-

izer at a BER of 10−6. To understand this effect we will now have a
closer look on the way the TDW estimator works. In fact, although
it is hardly noticeable in Fig. 6, in the uncoded case the TDW only
outperforms the CI estimator in the high Eb/N0 range, but performs
worse in the low Eb/N0 range (0–15 dB). However, this is the in-
teresting Eb/N0 range for coded transmission. We will now have
a look on the noise variances (after equalization) and later on the
BERs on the individual data subcarriers.

Fig. 7a and 7b show the normalized noise variances after equal-
ization at a fixed Eb/N0 (Eb/N0 = 4 dB) for both data estimators.
We observe that on the data subcarrier with index 11 the noise vari-
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Figure 5: BER performance of the data estimators for channel A.
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Figure 6: BER performance of the data estimators for channel B.

ance is tremendously reduced by the TDW compared to the CI es-
timator. This data subcarrier corresponds to the deep spectral notch
around 5 MHz in the channel’s frequency response. However, we
also notice that the noise variances on data subcarriers around data
symbol No. 11 are a little bit higher for the TDW compared to the
CI estimator. On average (when averaged over all data subcarriers)
the TDW equalizer clearly reduces the noise power compared to
the CI equalizer, but besides a significant noise reduction on highly
attenuated subcarriers, the TDW equalizer ‘distributes’ some noise
onto neighboring subcarriers. Fig. 7b additionally shows the differ-
ence between the resulting BERs of the TDW and the CI estimators
on a subcarrier basis. We observe, that the tremendous noise reduc-
tion by the TDW equalizer on the 11th data subcarrier indeed leads
to a lower subcarrier BER compared to the CI equalizer, but the
improvement is minor. In return, the higher noise variances on the
adjacent data subcarriers lead to increased corresponding subcarrier
BERs for the TDW estimator. In total the increase of these subcar-
rier BERs lead to a worse overall BER performance of the TDW
compared to the CI estimator for these Eb/N0 values. The overall
noise reduction by the TDW estimator is not translated to an overall
BER gain for that particular channel for these Eb/N0 values.

7. CONCLUSION

In this work we investigated several linear data estimators specifi-
cally designed for UW-OFDM. We introduced data estimators fol-
lowing the principles of classical estimation theory which lead to
ZF equalizers. Two simple and intuitive ZF equalizers and the opti-
mum ZF equalizer corresponding to the BLUE have been discussed.
Following the Bayesian estimation principle the LMMSE estimator
has been presented. We demonstrated the bit error behavior of the
proposed estimators in the AWGN channel and in frequency selec-
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Figure 7: Subchannel noise variances after CI and TDW data esti-
mation, and difference BERTDW −BERCI per subcarrier.

tive indoor environments. In frequency selective channels featuring
deep fading holes, the BLUE and, especially, the LMMSE estimator
significantly outperform the simple ZF estimators.
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