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ABSTRACT 

This paper presents a hierarchical stereo correspondence 

matching technique based on multiwavelet transforms. A 

global error energy minimization technique is employed to 

generate a disparity map for each of the four multiwavelet 

approximation subband pairs. The information in the four 

disparity maps is then combined using a Fuzzy algorithm to 

generate a single disparity map. This initial disparity map is 

estimated at the lowest resolution and needs to be progres-

sively passed on to higher resolution levels. Hence, the 

search at higher resolution levels is significantly reduced, 

thereby reducing the computational cost of the overall proc-

ess and improving the reliability of the final disparity map. 

Results show that the proposed technique produces a 

smoother disparity map with less mismatch errors compared 

to applying the same method in both spatial and wavelet do-

mains. The proposed algorithm fares very well when com-

pared to other state of art techniques from the Middlebury 

database. 

1. INTRODUCTION 

Stereo correspondence aims to find the closest possible 

match between the corresponding points of two images cap-

tured simultaneously by two cameras placed at slightly dif-

ferent spatial locations. The cameras are usually aligned in 

such a way that each scan line of the rectified images corre-

sponds to the same line in the other image, hence searching 

for the best correspondence match is done horizontally. A 

disparity map generated from the correspondence matching 

process, along with the stereo camera parameters are then 

used to calculate the depth map and produce a 3D view of 

the scene. However, a number of problems such as occlu-

sion, ambiguity, illumination variation and radial distortion 

complicate the search for the best corresponding points be-

tween the two views [1].  

Multiresolution analysis has played a significant role in ste-

reo correspondence matching and 3D reconstruction, which 

has led to promising results especially in terms of creating a 

robust and dense disparity map [2-5]. This is due to the hier-

archical and scale-space localization properties of the wave-

lets [4, 6]. This allows for correspondence matching to be 

performed on a coarse-to-fine basis, resulting in decreased 

computational costs.  Jiang et al. proposed a wavelet based 

stereo image pair coding algorithm [2]. A wavelet transform 

decomposes the images into low and high frequency sub-

bands and the disparity map is estimated using both the ap-

proximation and edge information. This is followed by a 

disparity compensation and subspace projection technique to 

improve the disparity map estimation.  Caspary and Zeevi 

[3] proposed a wavelet based stereo matching technique 

which employs a differential operator in the wavelet domain 

to iteratively minimize a defined cost function. Sarkar and 

Bansal [4] introduced a multiresolution based correspon-

dence matching technique using a mutual information algo-

rithm. They showed that the multiresolution technique pro-

duces significantly more accurate matching results com-

pared to correlation based algorithms at much lower compu-

tational cost. Li et al [5] present a stereo correspondence 

matching technique based on the 2D monogenic wavelet 

transform, which pairs the polyharmonic B-spline wavelet 

basis with its complex Riesz counterparts to specify a mul-

tiresolution monogenic signal analysis. They reported prom-

ising results compared to the state of art techniques.  

Research has shown that unlike scalar wavelets, multiwave-

lets can possess orthogonality (preserving length), symmetry 

(good performance at the boundaries via linear-phase), and a 

high approximation order at the same time [7], which could 

potentially increase the accuracy of correspondence matching 

techniques.  

Bhatti and Nahavandi [8] were amongst the very few to pro-

pose a multiwavelet based stereo correspondence matching 

algorithm. They use wavelet transform modulus maxima to 

generate a disparity map at the coarsest level. This is then 

followed by a coarse-to-fine strategy to refine the disparity 

map up to the finest level. Bagheri Zadeh and Serdean [9] 

proposed another multiwavelet based stereo correspondence 

matching technique to compare balanced multiwavelets ver-

sus unbalanced multiwavelets. Overall, in spite of their 

highly desirable properties compared to scalar wavelets, mul-

tiwavelets have been still relatively little used in stereo corre-

spondence matching algorithms so far. 

In this paper, a novel multiwavelet based stereo correspon-

dence matching algorithm using a global error energy mini-

mization technique is presented. A multiwavelet is first ap-

plied to the input stereo images to decompose them into a 

number of subbands. A global error energy minimization  

algorithm   is   then  employed   to  generate  a disparity map 
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Figure 1 – Analysis / synthesis stage of one level multiwavelet 

transform. 

for  each  of the four approximation   subbands. A Fuzzy al-

gorithm   is   used  to  combine  the four disparity maps and 

generate an initial disparity map. The initial estimated dispar-

ity map is then refined at higher resolution levels to form the 

final disparity map. 

The paper is organized as it follows. Section 2 introduces a 

brief review of the multiwavelet transform. The proposed 

stereo matching technique is discussed in Section 3. Ex-

perimental results are presented in Section 4 and the conclu-

sions are outlined in Section 5. 

2. MULTIWAVELET TRANSFORM 

In many respects, multiwavelet transforms are very similar 

to scalar wavelet transforms. Classical wavelet theory is 

based on the following refinement equations: 
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where ( )tφ  is a scaling function, ( )tψ  is a wavelet function, 

kh and kg  are scalar filters, m represents the subband num-

ber and k  is the shifting parameter. In contrast to wavelet 

transforms, multiwavelets have two or more scaling and 

wavelet functions. The set of scaling and wavelet functions 

of a multiwavelet in vector notation can be defined as:  
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where ( )tΦ and ( )tΨ  are the multi-scaling and respectively 

multiwavelet functions, with r scaling- and wavelet func-

tions. In the case of scalar wavelets their multiplicity order 

is 1=r , while multiwavelets support 2≥r . To date, most 

multiwavelets have 2=r . A multiwavelet with two scaling 

and wavelet functions can be defined as [10]: 
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where kH  and kG are 2x2 ( rr × ) matrix filters and  m  is 

the   subband  number [7].  Similar  to   wavelet  transforms,  
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Figure 2 – One level of 2D Multiwavelet decomposition. 

multiwavelets can be implemented using Mallat's filter bank 

theory [6]. Figure 1 shows one level of analysis/synthesis for 

a 1D multiwavelet transform, where blocks G  and H  are 

low- and high-pass analysis filters and ~G and ~H are low- 

and high-pass synthesis filters. Due to its separability prop-

erty, a 2D multiwavelet   transform   can   be   implemented 

via two 1D transforms. Therefore, for one level of decompo-

sition, a 2D multiwavelet with multiplicity of 2 generates 

sixteen subbands, as shown in Figure 2. In Figure 2, 

yx LL represent the approximation subbands, while yx HL , 

yx LH and yx HH  are the detail subbands, with 2,1=x  

and 2,1=y . A visual comparison of the resulting subbands 

for a 2D wavelet and respectively multiwavelet, is shown in 

Figures 3(a) and 3(b). As it can be seen from Figure 3, the 

multiwavelet transform generates four subbands instead of 

each subband created by the wavelet transform, and these 

four subbands carry different spectral content of the input 

image due to multiwavelet's filters properties. 

The major advantage of multiwavelets over scalar wavelets 

is their ability to possess symmetry, orthogonality and 

higher order of approximation simultaneously, which is im-

possible for scalar wavelets. Furthermore, the multichannel 

structure of the multiwavelet transform is a closer approxi-

mation of the human visual system than what wavelets offer. 

This multichannel structure has the potential to increase the 

accuracy of the disparity calculation and reduce the number 

of erroneous matches in disparity maps. Further information 

about the generation of multiwavelets, their properties and 

their applications can be found in [7, 10].  

3. MULTIWAVELET BASED STEREO 

CORRESPONDENCE MATCHING TECHNIQUE 

Figure 4 shows a block diagram of the proposed multiwave-

let based stereo matching technique. A pair of rectified ste-

reo images is input to the system. A multiwavelet transform 

is then applied to the input stereo images to decompose 

them into a number of subbands. The pre-filter employed in 

this paper is a repeat row type. The information in the ap-

proximation subbands is less sensitive to the shift variability 

of the multiwavelets. The four approximation subbands are 

first used to generate an initial disparity map. The corre-

sponding approximation subband pairs in the two images are 

passed to a regional based stereo matching block. The 

matching algorithm uses a global error energy minimization 

technique [11] to generate a disparity map between the two 

input subbands. This global energy minimization technique    
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(a)

(b)
 

Figure 3 – Single level decomposition of Lena test image (a) An-

tonini 9/7 wavelet transform,  (b) balanced bat01 multiwavelet 

transform. 

is briefly described  in sub-section 3.1. The matching proc-

ess outputs four disparity maps.  These maps are then com-

bined using a Fuzzy algorithm to generate a dense initial 

disparity map, which reduces the number of erroneous 

matches. This Fuzzy algorithm combines the same disparity 

values 
122111

,, LLLLLL ddd  and 
22LLd  generated from L1L1, 

L1L2, L2L1 and L2L2 basebands respectively, with the view of 

giving a higher weight to the disparity values in 
11LLd . The 

disparity values from the other three disparity maps 

221221
,, LLLLLL ddd are used to refine the initial disparity 

values. If the difference between the four disparity values is 

less than a threshold value (in this paper equal to 1), the 

mean value of the four disparities is put in the initial dispar-

ity map. In the other cases the initial disparity value for each 

pixel is calculated using the following empirical formula: 

 
3
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ddd
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++
+×=α          (4)                     

where α is a weighting factor.  If the difference between the 
value of each of the 

221221
,, LLLLLL ddd  disparities and the 

11LLd disparity is larger than a threshold value (in this paper 

equal to 4), they are discarded in the above formula.  

This initial estimated disparity map is generated at the low-

est resolution level and it needs to be refined by progres-

sively passing it on to higher resolution levels. Using the 

coarse-to-fine refinement principle, the search at high reso-

lution levels can be significantly reduced, thereby reducing  
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Figure 4 – Block diagram of the multiwavelet based stereo matching 

technique using the global error energy minimization algorithm. 
 

the   computational   cost   of    the   overall   process.   The 

refinement process is detailed in sub-section 3.2. Finally a 

median filter is applied to the dense disparity map obtained 

as a result of hierarchical disparity propagation, which leads 

to a smoother, final disparity map. 

 

3.1 Global Error Energy Minimization technique 
 

The Global Error Energy Minimization (GEEM) technique 

[11] calculates a disparity vector for each pixel. It searches 

for the best match for each pixel in the correspondence 

search area of the other image using an error minimization 

criterion.  For RGB images, the error energy criterion can be 

defined as:  
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where   1I     and   2I      are     the     two     input      images, 

),,,( yxen wwjiEr is   the energy   difference   of   the   pixel 

),(2 jiI    and     pixel   ),(1 yx wjwiI ++ ,   xd     is     the   

maximum displacement around the pixel in x  direction, 

yd is the maximum displacement around the pixel in y  

direction, m and n are the image size and  k  represents the 

 three components of an RGB image. 
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In order to determine the disparity vector for each pixel in 

the current view, the GEEM algorithm first calculates 

enEr of each pixel with all the pixels from its search area in 

the correspondence image. For every disparity vec-

tor ),( yx ww in the disparity search area, the energy of the 

error is calculated using equation (5) and placed into a ma-

trix.  Each of the resulting energy error matrices is first fil-

tered using an average filter to decrease the number of incor-

rect matches [12]. The disparity index of each pixel is then 

determined by finding the disparity index of the matrix 

which contains the minimum error energy for that pixel.  

In order to increase the reliability of the disparity vectors 

around the object boundaries, which is the result of object 

occlusion in images, the generated disparity map undergoes 

a thresholding procedure as it follows: 
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where ),(
~

jid  is the processed disparity map, ),( jid  is the 

original  disparity  map, α  is  a tolerance reliability factor,  
 

and ),( jiEren  is the minimum error energy of the pixel ),( ji  

calculated and selected in the previous stage. 

 

3.2 Hierarchical disparity propagation 

The information in the initial disparity map ),(
~

jid , gener-

ated at the coarsest level, needs to be propagated to the 

higher resolutions. Based on the wavelet theory, one point 

),( yx of a coarse subband in the decomposition level 1+i  

corresponds to four points )2,2( yx , )2,12( yx + , 

)12,2( +yx and )12,12( ++ yx of its finer subband at the 

decomposition level i . If ),( yx  in the left image corre-

sponds to ),( '' yx  in the right image at level 1+i , 

)2,2( yx corresponds to one of the four points )2,2( '' yx , 

)2,12( '' yx + , )12,2( '' +yx and )12,12( '' ++ yx  from level 

i . Hence, the disparity in level 1+i can be propagated to 

the next finer level i  by: 

        dyxDyxD ii ∆+= + ),(2)2,2( 1        (7) 

where d∆  is one of  )0,0( , )0,1( , )1,0(  and )1,1( , which 

minimizes the error of the matching metric. Disparities at 

the remaining points are interpolated from )2,2( yxDi . A 

similar scheme has also been employed by Sarkar and 

Bansal [4] in their paper. 

4. SIMULATION RESULTS 

The performance of the proposed algorithm has been as-

sessed   against   the ‘Cones’,  'Tsukuba',  'Teddy'  and 'Venus' 

stereo test images from the Middlebury stereo database [13].  

In order to give a visual comparison, the performance of the 

proposed multiwavelet based GEEM algorithm is compared 

against  similar  GEEM  algorithms  operating  in  the  spatial  

( a ) GHM Multiwavelet

( b ) Antonini 9/7 scalar wavelet

( c ) spatial domain  
Figure 5 – Disparity maps for stereo test images 'Teddy' (left) and 

'Cones' (right) using: a) the proposed multiwavelet-based GEEM,   

b) the wavelet-based GEEM and c) GEEM in spatial domain. 

 

domain and respectively in the wavelet domain. The experi-

mental results were generated using the unbalanced GHM 

multiwavelet and the Antonini 9/7 scalar wavelet. The result-

ing disparity maps obtained using the proposed multiwavelet 

based algorithm, the wavelet based algorithm and respec-

tively the GEEM technique applied to the original stereo   

views   for   the   'Teddy'  and  'Cones'   stereo   pairs,  are 

illustrated in Figures 5(a), 5(b) and 5(c) respectively.  In  

these  figures  areas  with  intensity zero represent occluded 

and unreliable disparities. As Figure 5 shows, the proposed 

multiwavelet based algorithm produces more accurate and 

smoother disparity maps compared to both wavelet and spa-

tial domain GEEM based algorithms. This can be explained 

by the multichannel structure of the multiwavelet transform, 

where the four resulting subbands carry different spectral 

content of the input images, which in turn enables the global 

error energy minimization algorithm to generate more reli-

able matches than in the other two less ‘adaptive’ cases.  

In order to give an objective quality comparison, the pro-

posed algorithm is also evaluated against some well known 

techniques from the Middlebury database [13]. The results 

are presented in Table 1. The chosen algorithms used for 

comparison are: AdaptingBP [14] (ranked second in the 

Middlebury database), DoubleBP [15] (ranked fourth in the 

Middlebury database), Graph Cut [16] and DP [17]. Table 1 

shows the percentage of "bad pixels" at which the disparity 

error is bigger than 1. For each pair of images, the results in 

non-occluded regions (nonoc.), all regions (all) and depth 

discontinuity  regions  (disc.)  are  presented. From Table 1, it 
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Algorithm 
'Tsukuba' 

Nonoc. All Disc. 

Proposed method 0.89 1.39 5.9 

AdaptingBP 1.11 1.37 5.79 

Double BP 0.88 1.29 4.76 

Graph cut 1.27 1.99 6.48 

DP 4.12 5.04 12 

 'Venus' 

Proposed method 2.59 2.61 2.02 

AdaptingBP 0.1 0.21 1.44 

Double BP 0.13 0.45 1.87 

Graph cut 2.79 3.13 3.6 

DP 10.1 11 21 

 'Teddy' 

Proposed method 6.45 7.12 9.31 

AdaptingBP 4.22 7.06 11.8 

Double BP 5.53 8.30 9.63 

Graph cut 12 17.6 22 

DP 14 21.6 20.6 

 'Cones' 

Proposed method  7.25 8.09 10.66 

AdaptingBP 2.48 7.92 7.37 

Double BP 2.90 8.78 7.79 

Graph cut 4.89 11.8 12.1 

DP 10.5 19.1 21.1 

Table 1–Evaluation results based on the online Middlebury stereo 

benchmark system. 

can be seen that the multiwavelet based algorithm produces  

the second best results for 'Cones' and 'Teddy' stereo  test  

images,   while   for   'Tsukuba'  and  'Venus'  it  ranks  third 

and respectively third  relative to the other four algorithms 

used for this comparison.  

5. CONCLUSION 

This paper introduced a hierarchical stereo correspondence 

matching technique based on multiwavelet transforms and 

global error energy minimization. The approximation sub-

bands of the two views were used to generate a set of four 

disparity maps using a global error energy minimization al-

gorithm. The resulting four disparity maps were then com-

bined using a Fuzzy algorithm to form an initial low resolu-

tion disparity map, which was then refined by hierarchically 

propagating it to the finer levels. Results show that the pro-

posed technique produces a disparity map with significantly 

less mismatch errors compared to applying the same GEEM 

algorithm in the spatial domain or in the wavelet transform 

domain. The performance of the proposed multiwavelet 

based algorithm has been compared to other well-known 

techniques benchmarked and published in the Middlebury 

database and the results indicate that the proposed multi-

wavelet based algorithm works well against many well estab-

lished algorithms ranked at top positions in the Middlebury 

database. The multichannel nature of the multiwavelets and 

the different spectral content of the resulting subbands allow 

for greater correspondence matching flexibility than in the 

case of wavelets, and explain why the multiwavelet based 

technique performs better than when similar GEEM algo-

rithms were applied in the wavelet and respectively the spa-

tial domain, highlighting the potential of the multiwavelet 

transform in stereo correspondence applications. 
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