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ABSTRACT

The problem of finding the location of a target based on range
measurements from an array of receivers is addressed. In the
linear least squares (LLS) approach for range-based position-
ing, an extra range variable is usually introduced. In this pa-
per, we derive a LLS algorithm with exploiting the known re-
lation between the source position and range variable, which
results in a simple constrained optimization problem. The
optimality of the proposed algorithm at sufficiently small
noise conditions is demonstrated by the theoretical analysis
as well as computer simulations.

1. INTRODUCTION

Wireless localization refers to the task of finding the posi-
tion of a target of interest based on measurements from an
array of spatially separated sensors with a priori known lo-
cations. It has been one of the central problems in many
fields such as radar, sonar, telecommunications, mobile com-
munications and sensor networks [1]–[2]. Time-of-arrival
(TOA), time-difference-of-arrival (TDOA), received signal
strength (RSS) and angle-of-arrival (AOA) are commonly
used measurements for source localization. Basically, TOAs,
TDOAs and RSSs provide the distance information between
the source and receivers while AOAs are the source bearings
relative to the receivers. Nevertheless, finding the source po-
sition is not a trivial task because the location-bearing mea-
surements are nonlinear functions of the target coordinates.
In this work, we focus on range-based positioning with the
use of TOA or RSS information.

Positioning algorithms can be classified as nonlinear and
linear approaches. The first category deals with the nonlinear
equations directly constructed from the range measurements,
which includes the nonlinear least squares and maximum
likelihood estimators [3]–[4]. Although they can achieve
optimal localization accuracy, global convergence of these
schemes may not be guaranteed because their optimization
cost functions are multi-modal. On the other hand, the sec-
ond approach provides global solutions because it converts
the nonlinear equations to be linear. Linear least squares
(LLS) [5]–[11] and subspace [12]–[14] methods are repre-
sentative examples for the second category. In the LLS ap-
proach for range-based positioning, an extra range variable
is required in order to produce linear equations. Recently,
Zhu and Ding [11] have proposed a computationally efficient
closed-form LLS-based position estimator which involves a
quadratic equation to relate the extra variable and the posi-
tion to be estimated. However, its estimation accuracy is sub-
optimal because the known relationship between the source
position and range parameter is not exploited. In this work,
our main contributions are to improve [11] by making use

of the known relationship according to constrained optimiza-
tion and prove that the performance of the proposed estimator
can achieve Cramér-Rao lower bound (CRLB) at sufficiently
small error conditions.

The rest of the paper is organized as follows. In Sec-
tion 2, an improved version of [11] by utilizing the known
relation between the range variable and position coordinates
is derived. The resultant constrained optimization problem
can be easily solved by the method of Lagrange multipliers.
The localization accuracy of the constrained LLS algorithm
is analyzed in Section 3, which shows that its performance
can achieve CRLB when the measurement noises are suffi-
ciently small. Simulation results are presented in Section 4
to evaluate the proposed method. Finally, conclusions are
drawn in Section 5.

2. PROPOSED POSITION ESTIMATOR

Consider an array of L ≥ 3 receivers in a two-dimensional
(2-D) space. Note that extension to three-dimensional space
is straightforward. Let x = [x y]T be the source position to

be determined and xl = [xl yl ]
T , l = 1,2, · · · ,L, be the known

coordinates of the lth receiver. The range measurements are

rl = ‖x−xl‖2 +nl , l = 1,2, · · · ,L (1)

where ‖ ·‖2 is the 2-norm operator and {nl} are the measure-
ment errors. For simplicity but without loss of generality, we
assume that {nl} are zero-mean white Gaussian processes

with variances {σ2
l }.

Squaring both sides of (1), we obtain:

2xlx= ‖xl‖2
2 − r2

l +‖x‖2
2 +2dlnl +n2

l , l = 1,2, · · · ,L
(2)

where dl = ‖x− xl‖2. Introducing an extra variable R =
‖x‖2

2 yields the following set of linear equations in matrix
form [11]:

Ax= b+hR+m (3)

where

A= 2

⎡⎢⎢⎢⎣
xT

1

xT
2
...
xT

L

⎤⎥⎥⎥⎦ (4)

b=

⎡⎢⎢⎢⎣
‖x1‖2

2 − r2
1

‖x2‖2
2 − r2

2
...

‖xL‖2
2 − r2

L

⎤⎥⎥⎥⎦ (5)
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m=

⎡⎢⎢⎢⎣
2d1n1 +n2

1

2d2n2 +n2
2

...

2dLnL +n2
L

⎤⎥⎥⎥⎦ (6)

and h= 1L with 1L being a L×1 vector of all elements 1.
To enforce the known relationship between R and x in the

LLS approach, a constrained optimization problem is formu-
lated. The corresponding position estimate, denoted by x̂,
is:

x̂= argmin
x̃

J(x̃,R) (7)

s.t. x̃T x̃= R (8)

where

J(x̃,R) = (Ax̃−b−hR)TW(Ax̃−b−hR) (9)

The x̃ = [x̃ ỹ]T is the optimization variable for x and W is
the weighting matrix. That is to say, [11] performs the un-
constrained optimization on (9) while our improvement is to
minimize (9) subject to the constraint of (8). If {σ2

l } are
known, we should use the optimum W, which is computed
as W = [E{mmT}]−1 ≈ [BQB]−1 [7]–[8] where E rep-

resents the expectation operator, Q = diag(σ2
1 ,σ2

2 , · · · ,σ2
L ),

and B= 2diag(r1,r2, · · · ,rL) which are obtained by ignoring

{n2
l } in m and employing the approximation of dl = rl , l =

1,2, · · · ,L. Otherwise, an appropriate choice for the weigh-
ing matrix is W = IL where IL denotes a L×L identity ma-
trix.

The problem of (7)–(8) is in fact equivalent to minimiz-
ing the Lagrangian:

L(x̃,λ ,R) = (Ax̃−b−hR)TW(Ax̃−b−hR)

+λ (x̃T x̃−R)
(10)

where λ is the Lagrange multiplier. The position estimate in
terms of the unknown λ and R is easily determined as:

x̂= (ATWA+λI2)
−1ATW(b+hR) (11)

To find λ and R, we substitute (11) into the equality con-
straint of (8) to get a quadratic equation:

aR2 +bR+ c = 0 (12)

where

a = (ATWh)T (ATWA+λI2)
−2ATWh (13)

b = 2(ATWb)T (ATWA+λI2)
−2ATWh−1 (14)

and

c = (ATWb)T (ATWA+λI2)
−2ATWb (15)

If λ is available, we can use the root selection procedure in
[11] to solve R. Its main feature is that the solution ambi-
guity can be removed according to the least squares criterion
which is similar to the first stage of the two-step LLS method

in [7]. Moreover, since there are two unknown parameters of
λ and R in (12), polynomial rooting which is employed in
the constrained scheme of [8], is not suitable for our prob-
lem. As J(x̃,R) may be multimodal, we suggest to combine
bisection search and grid search methods to solve for λ . The
estimation procedure of the proposed positioning algorithm
is summarized using the following steps:

(i) Grid search. Denote [−k,k] as the admissible range of
λ where k is a positive integer and there are a number
of grid points in this region. We calculate two roots of

R with (12) for each grid point of λ̂ ∈ [−k,k]. The root
selection procedure of [11] is employed to choose one
proper root as the range variable estimate, denoted by

R̂, for each λ̂ . From the investigated groups of {λ̂ , R̂},
we find the pair which minimizes the cost function of

J(x̃,R), denoted by {λ̂min, R̂min}. In doing so, a reduced

range of λ̂min ∈ [k1,k2] is obtained where k1 >> −k and
k2 << k.

(ii) Bisection search. Assuming the cost function is uni-
modal for λ ∈ [k1,k2], the bisection method is employed
to compute the optimum estimates of λ and R which
make J(x̃,R) minimal.

(iii) Substituting the optimum λ̂ and R̂ into (11), x̂ is ob-
tained.

It is worthy to point out that the proposed constrained
LLS algorithm is different from the the constrained approach
in [7]–[10],[15]. In our formulation as well as [11], x is con-
sidered as a function of R in (3), which is in the right hand
side of the equations. On the other hand, the latter methodol-
ogy formulates R as an unknown parameter to be estimated
and it is placed at the same side as x in its corresponding
equations. In theory, the two approaches should provide the
same estimation performance. Nevertheless, our approach
works properly even for a non-uniform linear array of re-
ceivers while the technique of [8]–[9],[15] fail in this case
because there exists singular problems in the corresponding
system of equations.

3. PERFORMANCE ANALYSIS

The variance of the proposed range-based positioning al-
gorithm is derived as follows. It is assumed that {σ2

l }
are known and the optimum weighting matrix W is em-
ployed. The constrained optimization problem of (7)–(8) can
be transformed to an unconstrained minimization problem by
substituting the constraint into the cost function. In doing so,
the cost function is now:

J(x̃) =
(
Ax̃−b−hx̃T x̃

)T
W

(
Ax̃−b−hx̃T x̃

)
(16)

Applying the variance formula for unconstrained optimiza-
tion problems which is valid at sufficiently small noise con-
ditions, the covariance of x̂, denoted by Cx, is [12]:

Cx ≈ [E{H(J(x̃))}]−1
E{∇(J(x̃))∇T J(x̃)} [E{H(J(x̃))}]−1

(17)

where H(J(x̃)) = ∂ 2J(x̃)/∂ x̃∂ x̃T and ∇(J(x̃)) =
∂J(x̃)/∂ x̃ are the corresponding Hessian matrix and
gradient vector evaluated at the true location.
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The expected value of Hessian matrix for J(x̃) is ex-
pressed as:

E

{
∂ 2J(x̃)
∂ x̃x̃T

}∣∣∣∣
x̃=x

=

[
E

{
∂
∂ x̃

(
∂J(x̃)

∂ x̃

)}∣∣∣∣
x̃=x

E

{
∂
∂ ỹ

(
∂J(x̃)

∂ x̃

)}∣∣∣∣
x̃=x

]
(18)

We start with differentiating (16) with respect to x̃

∂J(x̃)
∂ x̃

= 2
(
A−2hx̃T )T

W
(
Ax̃−b−hx̃T x̃

)
(19)

Then differentiating (19) with respect to x̃, we get

∂
∂ x̃

(
∂J(x̃)

∂ x̃

)
=−4[1 0]ThTW

(
Ax̃−b−hx̃T x̃

)
+2(A−2hx̃T )TW

(
A[1 0]T −2hx

) (20)

Substituting the true source location of x into (20) yields

∂
∂ x̃

(
∂J(x̃)

∂ x̃

)∣∣∣
x̃=x

=−4[1 0]ThTWm

+2(A−2hxT )TW
(
A[1 0]T −2hx

)
(21)

Taking expectation on both sides of (21) and applying the
approximation of m ≈ 2d�n with d = [d1 d2 · · ·dL]

T and

n= [n1 n2 · · ·nL]
T where � is the element-by-element prod-

uct, which is valid for small error scenarios, we have:

E

{
∂
∂ x̃

(
∂J(x̃)

∂ x̃

)}∣∣∣∣
x̃=x

≈ 2(A−2hxT )TW
(
A[1 0]T −2hx

) (22)

Similarly, repeating the derivation in (21)–(22) with the vari-
able ỹ yields

E

{
∂
∂ ỹ

(
∂J(x̃)

∂ x̃

)}∣∣∣∣
x̃=x

≈ 2(A−2hxT )TW
(
A[0 1]T −2hy

) (23)

Substituting (22)–(23) into (18), we get

E

{
∂ 2J(x̃)
∂ x̃x̃T

}∣∣∣∣
x̃=x

≈ 2(A−2hxT )TW
(
A−2hxT ) (24)

In a similar manner, we have:

E

{
∂J(x̃)

∂ x̃

(
∂J(x̃)

∂ x̃

)T
}∣∣∣∣∣

x̃=x

= 4
(
A−2hxT )T

WE{mmT}W(
A−2hxT )

≈ 4
(
A−2hxT )T

W
(
A−2hxT )

(25)

With the use of (24) and (25), it is shown that

E

{
∂J(x̃)

∂ x̃

(
∂J(x̃)

∂ x̃

)T
}∣∣∣∣∣

x̃=x

= 2E

{
∂ 2J(x̃)
∂ x̃x̃T

}∣∣∣∣
x̃=x

(26)

Then the covariance matrix of x is:

Cx ≈ 2

[
E

{
∂ 2J(x̃)
∂ x̃x̃T

}∣∣∣∣
x̃=x

]−1

=
[
(A−2hxT )TB−1Q−1B−1

(
A−2hxT )]−1

(27)

Using

B−1(A−2hxT ) =−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x− x1

d1

y− y1

d1x− x2

d2

y− y2

d2
...

...
x− xL

dL

y− yL

dL

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(28)

Cx can be expressed as

Cx ≈

⎡⎢⎢⎢⎣
L

∑
l=1

(x− xl)
2

σ2
l d2

l

L

∑
l=1

(x− xl)(y− yl)

σ2
l d2

l
L

∑
l=1

(x− xl)(y− yl)

σ2
l d2

l

L

∑
l=1

(y− yl)
2

σ2
l d2

l

⎤⎥⎥⎥⎦
−1

(29)

which is identical to the CRLB for range-based positioning
[8], indicating the optimality of x̂.

4. SIMULATION RESULTS

Simulations have been carried out to evaluate the perfor-
mance of the constrained algorithm by comparing with the
unconstrained version of [11] and CRLB. Firstly, we con-
sider a 2-D geometry of 4 receivers with known coordinates
at (0,0), (0,10),(10,0) and (10, 10). The errors {ni} have iden-

tical variances of σ2
i = σ2. For [11], we investigate the cases

of W= I4 and optimum weighting matrix which are referred
to as LLS and WLLS methods, respectively, while the pro-
posed estimator only examines the latter. In the proposed
scheme, we assign constant k = 100, 20 grid points and 30
iterative steps in the bisection search. The mean square posi-
tion error (MSPE) is employed as the performance measure
and all the results are averages of 1000 independent runs.

Figure 1 shows the MSPEs versus σ2 ∈ [0.0001 1] at

x = [2 8]T where the source is located inside the square
bounded by the receiver coordinates. It is seen that the
accuracy of the proposed scheme attains the CRLB when
σ2 ≤ 0.01 while both versions of [11] are suboptimal in the
full range of σ2, although the weighted one performs bet-
ter. In the second test, we plot the average MSPEs when
the source position is uniformly chosen within the square
bounded by the receivers for each trial in order to see the
average performance. The results are shown in Figure 2 and
we again observe the optimality of the constrained estimator.
On the other hand, both versions of [11] perform similarly in
the average scenario.

The above two tests are repeated for the source located
outside the region bounded by the four receivers. First, we
consider a source fixed at x = [−2 8]T and then investigate
the scenario when the source is uniformly distributed in an
area of 100 which is outside the square. The results are
shown in Figures 3 and 4, respectively, and similar findings
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are obtained. Nevertheless, the MSPE gap between the pro-
posed method and [11] is larger in Figure 4 when comparing
with Figure 2.

Additionally, the second and fourth tests are repeated for
the three-dimensional (3-D) geometry cases with 8 receivers
with known coordinates at (0,0,0), (10,0,0), (10,10,0),
(0,10,0), (0,0,10), (10,0,10), (10,10,10) and (0,10,10). The
results are plotted in Figures 5 and 6, respectively, and sim-
ilar findings are also obtained. Note that for Figure 6, the
source is uniformly distributed in a volume of 1000 which is
outside the cube for each trial.

To summary, according to all of the above results, it
seems that employing the weighting matrix only in the ex-
isting LLS method [11] does not help improving its perfor-
mance while the proposed constrained weighted method is
optimum when the noise is sufficiently small.

5. CONCLUSION

A constrained linear least squares algorithm for source local-
ization based on range measurements has been devised and
analyzed. Basically, it is an improved version of [11] by in-
corporating the constraint which relates the unknown source
location and extra range variable introduced in the lineariza-
tion process. It is proved that the accuracy of the proposed
estimator can achieve Cramér-Rao lower bound for small un-
correlated Gaussian disturbances.
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Figure 1: Mean square position error versus σ2 at x= [2 8]T
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Figure 2: Mean square position versus σ2 with random
source position inside boundary
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Figure 3: Mean square position error versus σ2 at x =
[−2 8]T
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Figure 4: Mean square position versus σ2 with random
source position outside boundary
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Figure 5: Mean square position versus σ2 with random
source position inside boundary in 3-D space
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Figure 6: Mean square position versus σ2 with random
source position outside boundary in 3-D space
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