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ABSTRACT

This paper presents a new space time adaptive processing
(STAP) for the rejection of range dependent ground clutter
in order to detect slow moving targets with an airborne radar.
STAP usually requires the estimation of the clutter plus noise
covariance matrix from secondary data neighboring the cell
under test. However, in most radar antenna array architec-
tures and/or configurations which are different from the con-
ventional uniform linear antenna array and side-looking con-
figuration the clutter is range dependent. We recently pro-
posed the use of a Taylor series expansion of the clutter plus
noise subspace in conjunction with the eigencanceler-based
(EC) STAP in order to mitigate the range non-stationarity of
the clutter. In this paper, the computationally costly EC is
replaced by a range-recursive algorithm which is capable of
tracking non stationarities with a reduced complexity com-
pared to the EC. The performance of the proposed algorithm
is satisfactorily tested and compared to other algorithms in
the case of a bistatic configuration.

1. INTRODUCTION

A main issue in airborne radar signal processing is to detect
and track targets slowly moving on the ground which may
be masked by Doppler spread ground clutter generated by
the radar platform motion. Space-time adaptive processing
(STAP) consists in mitigating the ground clutter by filtering
the radar echoes received on a multiple antenna array for dif-
ferent coherent time pulses [1]-[4]. A key issue is that the
construction of the optimal STAP filter at each range requires
the estimation of the clutter plus noise covariance matrix.
This is usually done by the straight averaging of secondary
snapshots at neighboring ranges. However in most applica-
tions, the snapshots statistics are range dependent. Indeed, in
the radar antenna architectures and/or configurations which
are different from the conventional uniform linear antenna
array (ULA) and monostatic side-looking (SL) configuration
the clutter is range dependent.

A number of methods in the literature have been de-
voted to the compensation of the clutter range dependency
in STAP. Among the parametric methods are the Doppler
Warping (DW) method [5][6], the Angle Doppler Compen-
sation (ADC) method [7][8] and the Adaptive Angle Doppler
Compensation (AADC) [8][9]. The derivative based updat-
ing (DBU) method [10], the Prediction of inverse covariance
matrix (PICM) [11] and the Registration Based range depen-
dence Compensation (RBC) [12][13][14] are non parametric
methods in the sense that they do not require the knowledge
of the radar configuration parameters.
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Following the idea of [15], we recently proposed the use
of a Taylor series expansion of the clutter subspace, associ-
ated with the clutter plus noise covariance matrix, in conjunc-
tion with the eigencanceler-based (EC) STAP [16] in order to
mitigate the range non-stationarity of the clutter [17]. In the
present paper, the computationally costly EC is replaced by
a range-recursive algorithm which is capable of tracking non
stationarities with a reduced complexity compared to the sub-
space expansion (SE) based EC (SE-EC). The performance
of the proposed algorithm is satisfactorily tested and com-
pared to the classical sample matrix inversion (SMI) method
[18], the EC, SE-EC, DBU and also SMI with diagonal load-
ing (DL) in the case of a bistatic configuration.

The problem is further formulated in the following sec-
tion and section 3 is devoted to the Taylor series based expan-
sion based STAP algorithms. First the DBU and the SE-EC
algorithms are recalled. Then the proposed range recursive
SE method is derived. Section 4 exhibits the simulation con-
texts and results and section 5 is the conclusion.

2. PRESENTATION OF THE PROBLEM

The aim of STAP is to mitigate the effects of ground clutter
in order to detect an eventual slowly moving target. This is
performed by a two dimensional filtering of the received data
followed by a detector. At a given range from the radar, the
received signal can be written as the sum of the target compo-
nent x; (when it is present at this range), the noise x, and the
clutter x, components (we here suppose the absence of jam-
mer). The optimal STAP weight vector maximizing the sig-
nal to noise plus interference ratio (SINR) is given at range k
by w{”" = R 'x where Ry = E {x;x/’} is the clutter plus
noise covariance matrix and Xy = X¢; +Xpx. We suppose
that these two components are mutually uncorrelated such
that Ry = Re + 21 where R« is the clutter covariance
matrix at range k and o? is the noise variance (the noise is
assumed to be spatially and temporally white). The compu-
tation of this filter thus requires the estimation of the clutter
plus noise covariance matrix. This is classically achieved us-
ing K snapshots at neighboring ranges

N 1 X
Rk:E > oxx)! 1)
I=1,I+k

yielding the SMI [18] algorithm for the STAP filter

witl =R, vy 2)
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where v is the target steering vector. It is shown in [18] that
an average performance loss of 3 dB compared to the opti-
mum can be obtained with K = 2MN, where M and N are
the number of pulses and the number of antenna elements,
respectively, when the snapshots are independent and identi-
cally distributed (iid) over ranges. This happens in the very
particular case of a ULA with a side looking (the platform
velocity vector is collinear with the antenna axis) monostatic
(the receiver and the transmitter are colocated on the same
platform) configuration which is classically used in the lit-
erature. In this case only, the locus of the repartition of the
power spectral density (PSD) of the clutter, namely, the lo-
cus of the clutter ridges, forms a straight line in the direction-
Doppler (DD) (spatial frequency, Doppler frequency) plane
[19]. These DD curves overlap for all ranges but their length
is reduced when the range is reduced. However, in practice,
whether in the presence of wind implying a crab angle be-
tween the platform direction and the ULA axis [5] or in the
case of non ULA antenna arrays [20] or also in the case of
bistatic radar (the transmitter and the receiver are not on the
same platform) [21], the clutter ridges are no longer straight
lines and, above all, become range dependent making the
neighboring data non stationary in range and not iid. It then
follows that the weight vector in (2) is range dependent.

3. TAYLOR SERIES EXPANSION BASED STAP
ALGORITHMS

We here briefly recall the DBU and the SE-EC algorithms
introduced in [10] and [17], respectively, and we present the
new algorithm.

3.1 DBU
The DBU algorithm [10] is based on the first order develop-
ment of the STAP weight vector at range k given by

Wy & Wo + 0 Aw, 3)

where o is a real scalar number chosen so that %Zle oy =
0 and +Y5 a? = 1. The output of the STAP filter is

wkH x; ~ W%, where the extended weight vector and the
extended data vector are

W = { vago ] )
and
%= { s } 5)

respectively. The DBU range compensation method thus
consists in finding w, and Aw,, of (3) through the optimum
extended weight vector

= ©)

where y
Rg=E {ikik } @)
is the extended covariance matrix and O is the NM-
dimensional null vector.
The extended covariance matrix is estimated by

Il( Zsz1 (XkaH)

| % sz:l (akxkxf) 8)
% Sy (axexfl)

R =
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The DBU is an extension of the SMI method with an ex-
tended data vector of dimension twice the dimension of the
actual observation vector. Its convergence in term of the
number of snapshots required in the estimation of Rz (8)
to achieve a performance loss of 3 dB compared to the opti-
mum is twice that of the SMI, it is to say 4MN. Moreover, as
the derivation of the DBU STAP filter (6) requires the inver-
sion of a (2MN, 2MN)-dimensional matrix, the main compu-
tational complexity of the DBU algorithm is in O((2MN)?)
(where O(.) means ~of the magnitude order of”).

3.2 Subspace Expansion based eigencanceler (SE-EC)

The EC introduced in [16] relies on the eigendecomposition
R, =U; A UY = Uc,kAc,kng + Un,kAn,kUIII{k )

where Acy and Ap; are the diagonal matrices
diag{d1---A} and diag{A,+1---Any} containing the
eigenvalues of the clutter plus noise covariance matrix Ry
suchas Ay >+ > A, > 4,11 = Ay = 6 and Ug and Up
are the associated eigenvectors. r is the rank of the clutter
only covariance matrix (in the absence of noise) and is given
by Brennan’s rule [1]'. The subspaces spanned by Ug
and U, ; are refered to as the clutter and noise subspaces at
range k, respectively. A STAP filter can be defined using the
eigencanceler method [16], as

wi = (I-Uc UL ) v (10)

In [17], this approach was combined with a Taylor series ex-

. . ~ Uo.
pansion of the interference subspace. Let @1; = { Aloll } be
O;
the " extended eigenvector of R of (7). According to (8)
and the conditions on oy given in the DBU subsection above,
one can write

an

Ry —E{R;) - [ R, 0 }

0 Ry

It is worth noting that the extended matrix R has the same
r eigenvalues greater than ¢ as Ry but with multiplicity
2. Note that if u is an eigenvector of Ry associated with
a given eigenvalue A, the two linearly independent 2MN-

dimensional vectors [u,0]" and [0,u]" are eigenvectors of
R associated with A. It follows that in the absence of noise,
the rank of Rg is 2r and that the extended clutter subspace
is of dimension 2r. Conversely, if a vector u = [uI,uﬂT
where u, and u, are vectors of dimension MN, is an eigen-
vector of the extended matrix Ry associated with a given
eigenvalue A, then uy, u, and any combination of u, and u,
are eigenvectors of Ry associated with the same eigenvalue
A.

Thus, it follows that the clutter subspace associated with ma-
trix Ry is, in particular, spanned by the vectors of the form

l,Eli,k = Uy, + akAuo,i (12)

IThe rank r of the clutter covariance matrix in the case of an ULA in
SL configuration is given by r =M + (N — 1) where 8 = ‘%T', va is the
platform velocity, 7, the pulse interval and A the wavelength. In the other
cases of antenna array geometries and configurations the rank is larger, it is
usually approximated by twice the rank of the ULA-SL case.
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where u,; and Au,; enters the partition of #;, the eigen-
vectors of R corresponding to the 2r largest eigenvalues of
Rg. Note that among these 2r eigenvectors only r of them
are linearly independent implying that span {ﬁl,k, e ﬁ2r7k}
is a r-dimensional subspace.

The SE-EC STAP algorithm thus consists in comput-
ing the MN-dimensional STAP weight vector as for the EC
method in (10) but with U 4 = [f1} ¢ - - - f1p,4] obtained in (12)
instead of Ug. '

The SE-EC algorithm was found in [17] to converge
faster than the DBU algorithm. Twice the dimension of
the clutter subspace associated with Rp, it is to say about
4r range cells, should be sufficient to obtain a 3 dB SINR
loss compared to the optimal STAP. However, the computa-
tional complexity which is dominated by the search of the
eigenvectors of a (2MN, 2MN)-dimensional matrix is still in
O((2MN)?) as for DBU.

In order to reduce the computational complexity of
the SE-EC algorithm, we propose a range recursive eigen-
canceler based STAP filter. This approach allows to avoid
both the inversion and the eigendecomposition of the clutter
plus noise covariance matrix while keeping the advantage of
a reduced convergence rate over DBU.

3.3 Subspace Expansion based FAPI (SE-FAPI)

We here propose to use a range recursive subspace-based al-
gorithm in conjunction with the Taylor series expansion sug-
gested above, in order to construct the STAP filter. Orig-
inally used in spectral analysis and antenna processing as
a time-recursive adaptive algorithm [22], the Fast Approxi-
mated Power Iteration (FAPI) subspace-based algorithm has
then been used in STAP for airborne radar [23]. In this case,
the recursion relates to range instead of time.

FAPI is based on the power iteration method [24] con-
sisting of the following compression and orthonormalization
steps :

R/(i)=RW(i—1)
(13)
W (i)C(i) = R'(i)

where, under some assumptions [24], W(i) is expected to
converge towards an orthonormal matrix the columns of
which span the dominant eigensubspace of a data covariance
matrix R. In (13), C(i) is such that C (i)C(i) = ®(i) with
®(i) = R’ (i))R/(i) and where i is the iteration index. In
order to reduce the computational complexity of the power
iteration method when the covariance matrix is recursively
updated as

R(k) = BR(k— 1) +x(k)x(k)* (14)

each time a new observation x(k) is received and where 0 <
P < 1is aforgetting factor, Badeau et al. replaced index i by
k and introduced the following hypothesis

W(EW (KT ~Wk—-1)Wk-1)H (15)

which means that the projection on the dominant eigensub-
space at range” k is approximated by the projection of the
dominant eigensubspace at range k — 1. The interested reader

2In the initial version of FAPI k is time whereas in the present paper k is
the range index and the dominant eigensubspace will be the clutter subspace

Initialization : W(O) — IQMNXZr, Z(O) — 12r><2r,
X(k) — )Ek
FOR k = 1 to K (number of snapshots)

y(k) =W(k—1)"-x(k)

h(k) = Z(k;kl) "y (k)

g(k) = ﬁ+y”£k;-h(k>

egk) =x(k) =W (k—1)-y(k)

§2(k) = II(k)|* - ||;‘4(1<)\|2

(k) = e

1+2(k) g (R) |2+ 1+€2 (k)| g (k) |
n(k)=1-(k) (k)]
y (k) =n(k)y(k)+ t(k)g(k)
h' (k) = Z(k— 1)1y’ (k)
d(k) = ;(—’,3(Z<k— g(k) — (h' (k)g(k))g(k))
Z(k) = 5(Z(k—1) —g(k)h' ()" +d(k)g(k)")
e (k) = n(k)x(k)—W(t—1)y

ENDFOR

Table 1: SE-FAPI algorithm

can refer to [22] for the long derivation of FAPI. The de-
tails of this algorithm adapted for our subspace expansion
are given in Table 1 where the input x(k) is the 2MN-
dimensional vector X; defined in (5) at range k. The cor-
responding STAP filter computed for each snapshot is then
obtained through

wsg—rap1 (k) = (Iuny — Wsg_papr (kYW sg_papr (k)™ (‘;t6)
where
Wie_rapi(k) = Wy (k) + ot AW (k) 17
and
W= | s | (s)

Wy (k) and AW (k) contain the MN first rows and the MN
last rows of W (k) obtained through algorithm FAPI of Table
1, respectively, and where oy is chosen as in subsection 3.2
for SE-EC.

The so-called SE-FAPI algorithm, being an eigencan-
celler based STAP filter is expected to converge in twice the
rank of the extended covariance matrix, it is to say, in 4r
snapshots as for the SE-EC algorithm. The key advantage
of the proposed SE-FAPI algorithm is that it requires neither
the inversion nor the eigendecomposition of the clutter plus
noise covariance matrix. The computational complexity of
the algorithm is in O(2MN), it is to say, linear with respect
to the parameters of the STAP filter.

The performance of the proposed algorithm is presented
in the following section.

4. SIMULATION RESULTS

In this section, simulation results illustrate the performance
of the proposed SE-FAPI algorithm®. The analysis of the

3Here B = 0.99. The influence of f8 is not analyzed in this paper
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XR | YR | ZR | OR | OR | VT | VR | Riest

80 | 50 |20 | 60 | 35 |90 | 90 | 170

Table 2: Characteristics of the bistatic configurations. xg, yg,
zg and Ry are expressed in km, ag and 8k in degrees and

vr and vg in m/s.

influence of this compared to the optimal STAP, the SMI,
the diagonal loading SMI [1], the EC-SE [17] and the DBU
[10] algorithms. This comparison concerns the performance
in term of signal to interference plus noise ratio loss (SINR
loss) at range k defined as the ratio of the SINR to the SNR
(without clutter)

2
o’ |w -v(/p, fs)]
NM'WkH-Rk-Wk

SINRjoss, = (19)

where wy is the weight vector of the clutter rejection filter
calculated at range k according to each algorithm and where
v(fp, fs) is a steering vector of dimension MN computed for
a candidate couple of Doppler and spatial normalized fre-
quencies (fp, fs) and which replaces the unknown actual tar-
get steering vector v¢ in (2), (6), (10), (16). It is written as:

v(fp, fs) =b(fp) ®a(fs) (20)

where b(fp), a(fs) and ® are the temporal and spatial steer-
ing vectors and the Kronecker product, respectively.

For this comparison, a pulsed Doppler airborne X-band
radar transmits M = 10 pulses during a CPI. The bistatic
configuration described in [13][14] is here considered. The
transmitter 7 is at the center of an (x,y,z) coordinate system
with a velocity vector vy in the direction of the x-axis. The
receiver R is located at (xg,yg,zg). Its velocity vector vg is
in a plane parallel to (x,y) and makes an angle of ag wrt vr.
The receiving ULA array consisting of N = 12 elements is
located in a plane parallel to (x,y) and makes an angle of g
wrt vg. The ground is assumed to be a horizontal plane at
z = —H. The values of these bistatic parameters are given in
Table 2 where R;.y is the range of the cell under test and vy
and vy are the amplitudes of the transmitter and receiver ve-
locity vectors, respectively. The clutter to noise ratio (CNR)
is assumed equal to 30 dB. The back lobe clutter is attenuated
by 30 dB with respect to the front lobe clutter.

Figure 1 exhibits the range dependency of the 2D pro-
jection on (fp, fs) of the locus of the bistatic configuration
clutter ridges (repartition of the power spectral density of the
clutter) [19][14].

Figures 2 and 3 exhibit a slice of the SINR,; (19)for
fs = 0. In Figure 2 the number of snapshots for estimating
the covariance matrices Rg and Rj; with (8) and (1),
respectively, is equal to K = 480. It is well known that, in
the case of a ULA in a side-looking configuration, the SMI
and the DBU converge to a SINRloss of 3 dB compared to
the optimal STAP when the number of snapshots is equal
to twice the dimension of the data vector. It follows that
the required number of snapshots for the SMI and the DBU

algorithms is at least K = 2NM and K = 4NM, respectively.
In our case of M = 12 and N = 10, K = 480 is then an
adequate choice for the SMI and the DBU. Thus, one can
see on Figure 2 that the loss of performance of the SMI
compared to the optimal STAP is due to the range non
stationarity involved by the bistatic configuration. This
remark is also valid for the diagonal loading (DL) version of
the SMI and the EC. At last, it is apparent that the proposed
SE-FAPI algorithm succeeds as well as the SE-EC algorithm
and even slightly better than the DBU to compensate the
range non stationarity. Now by considering Figure 3 where
the number of snapshots is K = 240 which is not enough for
the DBU algorithm, one can see that the proposed SE-FAPI
and the SE-EC algorithms are the only ones capable of
mitigating the range non stationarity involved by the bistatic
configuration.

5. CONCLUSION

A new STAP filter for the rejection of range dependent
ground clutter in airborne radar has been proposed. It re-
lies both on the Taylor series expansion of the clutter sub-
space associated with the clutter plus noise covariance matrix
and on the range recursive estimation of this clutter subspace.
The so-called SE-FAPI converges as fast as the SE-EC and
then faster than the DBU with a computational complexity of
O(2NM) instead of O((2NM)?).
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