
ACHIEVABLE SUM-RATES IN THE TWO-USER GAUSSIAN MULTIPLE-ACCESS
CHANNEL WITH A MIMO-AF-RELAY

Frederic Knabe and Aydin Sezgin

Emmy-Noether Research Group on Wireless Networks
Institute of Telecommunications and Applied Information Theory
Ulm University, Albert-Einstein-Allee 43, 89081 Ulm, Germany

Email: {frederic.knabe,aydin.sezgin}@uni-ulm.de

ABSTRACT

We consider a two-user multiple-access channel (MAC),
where an amplify-and-forward (AF) full-duplex relay is used
to increase the achievable sum rate. While the transmitters
and the receiver are assumed to have a single antenna, the
relay is equipped with multiple antennas. Thus, spatial pro-
cessing can be applied at the relay, which is subject to opti-
mization for achieving higher data rates. This optimization
problem is non-convex and hard to solve in general. How-
ever, for the two special cases in which either the direct links
between transmitter and receiver are not present or the relay
operates in another frequency band, we are able to derive up-
per and lower bounds that are performing reasonably well for
a large set of parameters. Using the insights from the special
cases, we also obtain upper and lower bounds for the general
case.

1. INTRODUCTION

In today’s wireless communication systems, the demand for
higher data rates and wide-range coverage is steadily grow-
ing. To meet this requirements, a high density of base sta-
tions is necessary, which entails high costs for installation
and maintenance. Another possibility to increase coverage
and range is the use of relay nodes, which have much lower
costs. Relay channels were considered in [1] first, and have
drawn more and more research attention in the last decades.

Depending on how the signals are processed at the relay,
we distinguish between different types of relaying schemes.
The most common ones are amplify-and-forward (AF, also
called non-regenerative relaying) and decode-and-forward
(DF, also called regenerative relaying). While in AF, the re-
lay simply amplifies the received signals subject to a power
constraint, a complete decoding and re-encoding of the sig-
nal is necessary when using DF which yields higher costs and
larger delays. For these reasons, we will restrict ourselves to
AF relaying schemes in this paper.

In addition to relays, the deployment of nodes with multi-
ple antennas helps to further increase the possible data rates.
The combination of these two paradigms, especially in multi-
user systems, is an enormous challenge and has been consid-
ered in numerous publications, such as [2] and the references
therein. For instance, [3] introduces different power alloca-
tion algorithms for multiple-input multiple-output (MIMO)
systems with multiple users and an AF-relay for both up-
and downlink. However, this work assumes there are no di-
rect connections between transmitter(s) and receiver(s) such
that all communication takes place over the relay. In [4] the
direct links are considered but only for a single-user system.

Moreover, in contrast to [3] and our work, [4] investigates a
system with a half-duplex relay.

In this work, we are going to consider a two-user
multiple-access channel (MAC) with a MIMO full-duplex
AF relay. Contrary to [3], we also consider scenarios with
direct links between transmitters and receiver and show that
up to a certain available relay power, their influence can not
be neglected. In detail, we consider three different scenarios.
For the first scenario, we assume that no direct links between
the users and the receiver are present. In the second scenario,
direct links are present, but the relay-to-receiver communica-
tion takes place in a different frequency band. The last (and
most involved) scenario uses both direct links and communi-
cation of all stations in the same band.

This work is structured as follows: In section 2 we in-
troduce the notation and the underlying channel model. The
channel model is given in its most general case first, and then
modified to the specific cases mentioned above. Achievable
rates and upper bounds for those scenarios are derived in sec-
tion 3. Subsequently those rates are evaluated and plotted
(section 4). Section 5 finally concludes the paper.

2. PROBLEM FORMULATION

2.1 Notation
We denote all column vectors in bold lower case and matri-
ces in bold upper case. The trace and the determinant of a
matrix A are identified by tr(A) and |A|, respectively. We
use ‖x‖ to denote the euclidean norm of a vector x and I
to describe the identity matrix. Furthermore, λmax(A) and
vmax(A) indicate the largest eigenvalue of a matrix A and
its corresponding eigenvector. The signals that the relay re-
ceives and transmits in time slot j are named yr( j) and xr( j),
respectively. However, we omit the time-slot whenever it is
superfluous or can be grasped from the context.

2.2 Basic channel model
In this paper, we will consider three relaying scenarios:

(I) Relaying without direct links
(II) Out-of-band relaying with direct links
(III) In-band relaying with direct links

For all scenarios, we assume that the channels in between
the nodes are flat fading channels and that the nodes know
them perfectly. We consider the achievable sum of the rates
of user 1 and user 2 as well as its upper bound for the above
scenarios. In this subsection, we will describe what is com-
mon for all scenarios, while in the next subsection we de-
scribe their differences.
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Figure 1: Multiple access channel with a MIMO relay

We consider a multiple-access relay channel (MARC)
with two transmitters, one receiver and an amplify-and-
forward (AF) full-duplex relay as shown in Figure 1. It is
assumed that both transmitters and the receiver have only one
antenna, while the relay has Mr ≥ 1 antennas. This is a valid
assumption, given the users are mobile stations with stronger
constraints on cost and size than the relay.

The channel gains between the transmitters and the re-
ceiver are given by h1 and h2, while the vectors h1r and h2r
denote the channel gains from transmitter one and two to the
relay, respectively. The vector channel gain from the relay to
the destination is described by hr

H .
Thus, the relay’s received signal yr can be written as

yr = h1rx1 +h2rx2 +zr,

where zr is a white Gaussian noise vector of unit variance.
The received symbol is amplified by the matrix F = γF̂ and
sent in the next time slot. Thus, the transmit vector of the
relay in time slot j is xr( j) = Fyr( j−1). Its average power
is

E(tr(xrxH
r )) = γ

2F̂(h1rP1hH
1r +h2rP2hH

2r + I)F̂H , (1)

where γ > 0 is a factor, which ensures that the average trans-
mit power of the relay is limited by

E(tr(xrxH
r ))≤ Pr. (2)

Moreover, the maximum power of the transmitted signals is

E(|xi|2)≤ Pi (i = 1,2)

and the white Gaussian noise z at the receiver is assumed to
have unit variance as well.

Finally, in scenarios I and II, we can write the received
vector y as

y = h̃1x1 + h̃2x2 + z̃, (3)

i.e., as the output of an equivalent MAC (without relay). The
differences among the two scenarios are the equivalent chan-
nel vectors h̃1, h̃2, and the equivalent noise covariance ma-
trix Z̃ = E

(
z̃z̃H

)
. Note, that we generalized y as a vector

because this is required to model the out-of-band relaying
scheme. The achievable sum rates for scenarios I and II can
be obtained using successive interference cancellation and
are given by

R = log2 | Z̃+ h̃1P1h̃H
1 + h̃2P2h̃H

2 | − log2 | Z̃ | . (4)

D
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Figure 2: ISI channel of user i in scenario III

For scenario III we can also model the MARC as an
equivalent MAC. However, this MAC is now frequency se-
lective, which requires more involved schemes for finding the
achievable sum rates. Thus, (4) is no longer valid. A formula
for calculating the achievable rate in scenario III is given in
the next section.

2.3 Relaying scenarios
2.3.1 Relaying without direct links

For the first scenario, we have h1 = h2 = 0. Thus, all commu-
nication between the transmitters and receiver goes through
the relay and we can write the channel and noise matrices of
the equivalent MAC as

h̃i = hr
HFhir (i = 1,2)

Z̃ = hr
HFFHhr +1

2.3.2 Out-of-band relaying

The second scenario that we consider has direct links be-
tween transmitters and receivers. But, in contrast to the first
scenario, the relay transmits in another frequency band than
the transmitters. This can be modeled by extending the re-
ceive symbol y to a vector y = [yi yo]T , where yi is the in-
band signal from the transmitters and yo is the out-of-band
signal from the relay. Due to the separation, the time shift
between the transmitted signals and their amplified versions
due to the processing at the relay is irrelevant, as they can be
stored and jointly processed. Thus, we can write the param-
eters of the equivalent MAC as

h̃i = [hr
HFhir hi]T (i = 1,2) (5)

Z̃ =
[

hr
HFFHhr +1 0

0 1

]
. (6)

2.3.3 In-band relaying with direct links

Finally, in the third scenario, we assume that the direct links
are present and all stations transmit in the same frequency
band. As the amplified signals from the relay arrive at the
destination with a delay of one time slot, the channel can be
seen as a MAC with inter-symbol interference (ISI), which
is discussed in [5]. In a time-discrete model, the channel of
user i (without noise) can be described by the linear filter in
Figure 2, where the element “D” indicates the delay of one
time slot.

Thus, in contrast to the previous scenarios, both users’
channels are now frequency selective and no longer flat-
fading channels. Their spectrum can be obtained by the
Fourier transform of the filter’s impulse response. Its squared
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magnitude normalized by the noise-power hr
HFFHhr +1 at

the receiver is given by

Ti(w) =
|hi +hr

HFhir · e jw|2

hr
HFFHhr +1

(i = 1,2),

where w denotes the frequency. As (3) does not subsume fre-
quency selective channels, (4) can not be used to calculate
the achievable sum rate for scenario III. Instead, the achiev-
able sum rate is given by [5] 1

R≤ 1
2π

∫ 2π

0
log2(1+S1(w)T1(w)+S1(w)T1(w))dw, (7)

where Si(w) (i = 1,2) are the power spectral densities (PSDs)
of the transmitted signals. The PSDs that maximize (7) can
be found by multi-user water-filling [5].

3. ACHIEVABLE SCHEMES AND UPPER BOUNDS

For all the scenarios introduced in the preceding section, we
assume the powers P1 and P2 at the transmitters are fixed. As
the transmitters have only one antenna, the parameter that
needs to be optimized is the relaying matrix F. Unfortu-
nately, the problem of finding the matrix F that maximizes
the sum-rate of the MARC under a given power constraint Pr
at the relay is non-convex and thus the global optimum is not
straightforward to achieve.

To simplify this problem, we will first derive two upper-
bounds on the sum-rate for the first two scenarios. They
will be denoted by Ri

j, where i is the number of the scenario
(given in roman numbers) and j is the number of the bound.
The first bound is obtained by assuming a noise-free relay,
i.e., zr = 0. For the second bound, we ignore the power-
constraint at the relay, i.e., we allow Pr→∞. It turns out that
these bounds can be maximized by choosing F either accord-
ing to an eigenvector-based scheme (first bound) or accord-
ing to the ANOMAX scheme [6] (second bound), which is
briefly described in the next subsection.

In a second step, we will use the obtained matrices in the
actual MARC with non-zero noise and finite transmit power
at the relay to calculate achievable rates. Therefore, we set F̂
to the matrices obtained from the upper bounds and choose
γ such that (2) is fulfilled. Of course, these matrices are not
generally optimal without the relaxations, but we will see in
section 4, that they yield rates that achieve the upper bounds
asymptotically.

For the third scenario, the procedure is a bit different as
only one upper bound RIII is derived. Moreover, this bound
does not suggest any relaying matrix F. Instead, we simply
use the amplifying matrices that we obtained from the other
two scenarios to get an achievable sum rate.

3.1 Algebraic norm-maximizing (ANOMAX) scheme
Originally, the ANOMAX scheme was used for the two-way
relaying channel, but it can also be used in our case. The
scheme finds a matrix that maximizes a weighted sum of
Frobenius norms of two matrix expressions given as follows:

Fβ = arg maxβ Jβ (F) s.t. ‖F‖F = 1, where

Jβ (F) = β
2 · ‖AFB‖2

F +(1−β )2 · ‖CFD‖2
F ,

1Note that, as we use complex channel inputs, the range of the integral
changes from [0,π] to [0,2π]

where β ∈ [0,1] is a weighting factor and ||A||F denotes the
Frobenius norm of a matrix A. To apply ANOMAX in the
MARC we set A = C = hr

H , B = h1r, C = h2r, and β ac-
cording to the scenario, where we want to use the ANOMAX
scheme. Note that the values hr

HFhir (i = 1,2) are scalars
here, such that their Frobenius norm is simply their absolute
value. For further details about the scheme, see [6].

3.2 Relaying without direct links

As announced, we derive two upper bounds for scenario I.
The first one is obtained by assuming a noise-free relay,
while for the second bound we ignore the power constraint
at the relay.

3.2.1 No noise at the relay

In the case, where the relay is noise-free (zr = 0), the sum
rate is given by

RI
1 = log2

(
1+P1 · |hr

HFh1r|2 +P2 · |hr
HFh2r|2

)
.

Interestingly, it turns out that this expression can be max-
imized by the ANOMAX scheme and setting β = (P2/P1 +
1)−1/2, which delivers the optimal F̂ for this upper bound.

3.2.2 Infinite relay power

Ignoring the power constraint (2) at the relay is equivalent to
letting γ → ∞. By doing this, we can bound the sum-rate as

R = log2

(
1+

P1 · |hr
HFh1r|2 +P2 · |hr

HFh2r|2

hr
HFFHhr +1

)
≤ log2

(
1+

hr
HF(h1rhH

1r ·P1 +h2rhH
2r ·P2)FHhr

hr
HFFHhr

)
= log2

(
1+

hr
HFGFHhr

hr
HFFHhr

)
≤ log2 (1+λmax(G))

, RI
2,

where we introduced the new matrix

G , h1rhH
1r ·P1 +h2rhH

2r ·P2.

The last inequality is obtained from the upper bound of the
Rayleigh quotient [7, p. 176f.]. It can be achieved by choos-
ing F̂ as the dyadic product of hr and the eigenvector corre-
sponding to the largest eigenvalue of G:

F̂ = hrvmax(G)H .

Choosing F̂ as a dyadic product of hr and the eigenvector of
a matrix will be referred to as “eigenvector scheme” in the
remainder of this paper.

3.3 Out-of-band relaying

If the link from the relay to the destination is in another band,
we obtain

RΣ,II = log2(1+S−T +P1|h1|2 +P2|h2|2)
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by combining (4), (5), (6), and some manipulations, where

S = |G1|2P̃1 + |G2|2P̃2

T = 2P1P2 ·Re{h1hH
2 GH

1 G2}

Gi =
hr

HFhir√
hr

HFFHhr +1

P̃i = (Pi +P1P2|h j|2) (i, j = 1,2; j 6= i),

and Re{.} denotes the real part of an expression. As before,
we will derive two upper bounds by the same relaxations.

3.3.1 No noise at the relay

If the relay is noise-free, Gi reduces to Gi = hr
HFhir, i.e.,

S can be maximized by the ANOMAX scheme with β =
(P̃1/P̃2 +1)−1/2. For T , a lower bound T ∗ ≤ T is given by

T ∗ =
{

0 T ≥ 0
2P1P2Re{γ2‖hr‖4h1hH

2 hH
1rh2r} T < 0,

where the expression for the case T < 0 is obtained by setting
F̂ = hrvH

max(h2rhH
1r) and selecting γ such that (1) is fulfilled.

3.3.2 Infinite relay power

For the other bound, we will first rewrite T as

T = P1P2
hr

HFXFHhr

hr
HFFHhr +1

,

where X = h1hH
2 h2rhH

1r +hH
1 h2h1rhH

2r. Hence, we obtain

S−T → hr
HF(h1rhH

1rP̃1 +h2rhH
2rP̃2−P1P2X)FHhr

hr
HFFHhr

if we assume infinite power at the relay. This expression is
again a Rayleigh coefficient and can be maximized by the
following eigenvector scheme:

F̂ = hrvmax(h1rhH
1rP̃1 +h2rhH

2rP̃2−P1P2X).

Finally this upper bound can be explicitly formulated as

RII
2 = log2(1+λmax(h1rhH

1rP̃1 +h2rhH
2rP̃2−P1P2X)

+P1|h1|2 +P2|h2|2).

3.4 In-band relaying with direct links
As already stated in subsection 2.3.3, the setup for scenario
III is a MAC with ISI. Obtaining a matrix F, which maxi-
mizes the expression in (7) directly is rather difficult. Even
for maximizing T1(w) and T2(w) separately, it is hard to find
optimal matrices F. This difficulty is revealed by the results
of [5], where it is stated that maximizing the channel gains
of the second tap of the ISI-channels (in our case hH

r Fhir,
see Figure 2) can decreases the sum-rate if T1(w) and T2(w)
both have a low-pass characteristic. On the other hand if the
channels have different characteristics, increasing the second
tap can also increase the sum rate. Thus, also the phase of
the channel gains plays an important role in this scenario.

Therefore, we resort to an unconstructive upper bound
for the expression in (7), which does not suggest any optimal
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Figure 3: Achievable sum-rates and upper bound for scenario
I (no direct links) and P1 = 12 dB, P2 = 7 dB, Mr = 3

F. This bound is obtained bounding both T1(ω) and T2(ω)
by their largest values, i.e., we have

Ti(ω)≤ |hi|2 + ||hir||2 (i = 1,2). (8)

Unlike the previous bounds, which could be obtained from
the ANOMAX or the eigenvector scheme, the derivation of
this bound involves writing F as the sum of rank-1 matrices
and a simple maximization. Due to the page constraints, we
omit a detailed proof here. Using (8), we can replace Ti(ω)
by their upper bound in (7) and obtain a flat fading channel
again, such that

RIII = log2(1+P1 · (|h1|2 +‖h1r‖2)+P2 · (|h2|2 +‖h2r‖2))

delivers an upper bound on the sum-rate for the in-band re-
laying scenario with direct links.

4. SIMULATION RESULTS

In this section we will discuss the achievable rates and upper
bounds for all three scenarios. In our simulations, we as-
sumed that the channel gain vectors and scalars are Rayleigh
distributed and independent. All results are obtained by
averaging over 1000 channel replications. As already de-
scribed in the beginning of the last section, our lower bounds
are achieved by using the amplifying matrices of the upper
bounds. Therefore, we use Ri

j to denote the sum-rate that is
achieved by the amplifying matrix F which maximizes the
j-th upper bound of the i-th scenario.

4.1 Relaying without direct links
The lower and upper bounds for the scenario where no direct
links are present are plotted in Figure 3. It can be seen that
for both small and high values of the available power at the
relay Pr, the achievable rates get arbitrarily close to the upper
bounds. Moreover, we can observe that selecting F accord-
ing to scheme 2 (the eigenvector scheme) leads to a slightly
better performance than using the ANOMAX scheme.

4.2 Out-of-band relaying
If the links between transmitters and destination are present
and the relay transmits in a different band, we obtain the
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Figure 4: Achievable sum-rates and upper bound for scenario
II (out-of-band-relaying with direct links) and P1 = 12 dB,
P2 = 7 dB, Mr = 3
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Figure 5: Achievable sum-rates and upper bound for scenario
III (in-band relaying with direct links) and P1 = 12 dB, P2 = 7
dB, Mr = 3

rates plotted in Figure 4. The results are similar to those
of the preceding scenario: Both for small and high values of
Pr the achievable rates are close to the upper bounds. How-
ever, in comparison to the scenario without direct links, the
gap between scheme 2 (eigenvector scheme) and scheme 1
(ANOMAX scheme) is larger.

4.3 In-band relaying with direct links
In the case, where all links are present and in the same band,
the gap between achievable rates and upper upper bounds is
quite large as it can be seen in Figure 5. This is mainly due to
the upper bound for (7). To improve the existing upper bound
for low Pr we also plotted the first upper bound of scenario
two, which is also valid here. Another reason for the gap
is the suboptimality of the chosen F in the plots since the
optimal F is not straightforward to obtain.

The achievable rates are obtained by choosing F as for
the previous scenarios, which is supposably suboptimal but
still provides higher rates than heuristic choices of F like
unity, random or DFT matrices. In a direct comparison, it
can be seen that the schemes derived from the out-of-band

model provide better rates for low Pr, while choosing F as in
scenario I is good if Pr is large. This behavior is due to the
fact, that for large values of Pr the path over the relay is much
stronger on average, as the relay has multiple antennas and
large power. Thus, the direct links can almost be neglected.
On the other hand, if the relay has less power, the direct links
are more important and have to be considered. This becomes
clear when comparing the lower bounds of Figure 5 to the
first upper bound of Figure 3, where it can be seen that at
Pr ≤ 10 dB the rate decrease is enormous if the direct links
are neglected.

5. CONCLUSION

We have considered the two-user MAC with a full-duplex
MIMO-AF-Relay for different three different scenarios. For
the scenarios, where the direct links are not present or where
the relay has an out-of-band connection to the destination,
we could find upper bounds on the achievable sum rate. With
the insights obtained from these bounds, achievable schemes
were derived that reach the upper bounds for both small and
high values of the relay power Pr. For the third scenario,
where all links are present and in the same band, there re-
mains a gap between the upper and lower bounds. However,
we could show that below a considerably high value of Pr,
neglecting the direct links does not fully reflect the capabil-
ity of the MARC.
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