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ABSTRACT

POS3POLY is a new library for solving convex optimization
problems with positive polynomials, designed and written by
the current authors. POS3POLY allows simple descriptions
of three types of positive multivariate polynomials, namely
trigonometric, real and hybrid, sparing the user of the task
of parameterizing them with linear matrix inequalities. Pos-
itivity on semialgebraic domains and a polynomial Bounded
Real Lemma are also treated. In this paper, we present the
features of POS3POLY that allow the manipulation of pos-
itive trigonometric polynomials in CVX and are useful in
FIR filter optimization. Three fully detailed examples are
given, for designing peak-constrained least-squares linear-
phase filters, sparse 2D linear-phase filters and 2D approx-
imately linear-phase filters.

1. INTRODUCTION

FIR filter design is one of the main beneficiaries of the devel-
opments in convex optimization [3]. Many recent methods
for optimizing one- or multi-dimensional FIR filters appeal
to linear, quadratic and semidefinite programming (SQLP)
as a basic tool. The design is facilitated by several software
libraries appeared in the last decade as a practical outcome
of the theoretical progress of convex optimization methods.
For SQLP, leading examples are SeDuMi [11] and SDPT3
[12], in which the SQLP problem has to be described in an
elementary standard form. A further step in easing designer’s
task was taken with CVX [6], which allows modeling convex
problems, including but not limited to SQLP, using a natural
language similar to the mathematical description of an opti-
mization problem; the transformation to an equivalent SQLP
problem is hidden to the user. YALMIP [8] is another mod-
eling tool in the same vein, dealing also with some instances
of nonconvex optimization.

Some of the FIR filter design methods appeal to posi-
tive polynomials and their parameterization via linear ma-
trix inequalities [5]. Relatively simple for 1D globally pos-
itive polynomials, the parameterizations become cumber-
some for polynomials that are positive on intervals or do-
mains, in the multidimensional case. The library POS3POLY
(www.schur.pub.ro/pos3poly) is an extension of SeDuMi
and, through it, of other SQLP libraries, which allows a sim-
plified description of convex optimization problems that in-
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clude positive polynomials. POS3POLY solves the problem
min ¢’x (1
st. Ax=b, xeKxP
where K is the SQLP cone (cartesian product of nonnegative
orthant, second order cone and semidefinite matrices cone)
and P is a cartesian product of diverse cones of positive poly-
nomials. POS3POLY transforms (1) into the standard SQLP
problem
min &’%

st. Ax—bh, @

xcK
by taking advantage of the available parameterizations of
sum-of-squares polynomials via semidefinite (Gram) matri-
ces. For multivariate polynomials, (2) is a sum-of-squares re-
laxation of the original problem (1), hence may not have the
same solution. However, as revealed by empirical evidence,
the solution of (2) in practical problems is usually identical
or very close to the solution of (1).

POS3POLY can also be used for creating the set of
positive polynomials inside CVX. In CVX, the linear con-
straints need not be expressed as a single system Ax = b
and equalities can be mixed with inequalities. However, af-
ter internal transformations, CVX solves a problem of form
(2). Hence, POS3POLY offers support for both the high-
end user who needs only recognize and summarily describe
the convex optimization problem and the more optimization-
knowledgeable user, who is familiar with SeDuMi but does
not have to bother with the intricacies of positive polynomi-
als parameterizations.

POS3POLY allows working with three types of polyno-
mials (hence the ’3’ in the name): trigonometric, real and hy-
brid (real-trigonometric). The polynomials can be univariate
or multivariate, having real or complex, scalar or matrix co-
efficients. The positivity can be global or only on semialge-
braic domains (intervals in the univariate case). A Bounded
Real Lemma (BRL) for polynomials is also implemented.

Other libraries for sum-of-squares optimization like
SOSTOOLS [10] or GloptiPoly [7] are dedicated to real
polynomials and cannot efficiently integrate SQLP con-
straints. CVX contains a module for positive univariate poly-
nomials and YALMIP for real sum-of-squares. Compared to
these predecessors, POS3POLY comes not only with a novel
approach, but with a more complete treatment of polynomial
positivity.

This paper shows the use of POS3POLY in the de-
sign of FIR filters, hence the presentation will be restrained
to trigonometric polynomials (fully implemented only in
POS3POLY; real and hybrid polynomials are treated simi-
larly, see POS3POLY’s guide on the site.) Due to space
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constraints, we only describe POS3POLY use within CVX,
since it leads to more compact programs. We solve several
1D and 2D FIR filter design problems. Proof to how much
POS3POLY and CVX simplify the programming burden is
the fact that the paper contains the full code for these prob-
lems. The following sections are each dedicated to a feature
of POS3POLY; the FIR filter optimization problems are pre-
sented as examples.

2. POSITIVE TRIGONOMETRIC POLYNOMIALS

A symmetric (zero-phase) d-variate trigonometric polyno-
mial has the form

R(z)= Y nz ™ roac=r, 3)

k=—n

where z = (z1,22,...,24), 2¥ = zlf] ...zZ" and * denotes com-
plex conjugation; the sum in (3) goes for all k € N¢ such
that —n < k < n. The polynomial has real values on the
unit d-circle T¢. Due to symmetry, the coefficients defining
the polynomial belong to a halfspace; for convenience, we
use the halfspace .77 € Z¢ defined by: k € 7 if (kg > 0)
or (kg =0 and (ki,...,kg_1) € 5;_1). In POS3POLY, the
polynomial is described by the vector

[r(o,...,o) 1 7(1,0,...,0)5 - 5T (n1,0,...,0) 5 rgfnl ,1,0,...,0) 5 (4)
“o P (=nyna,ng)r s Ty ng,eng)

The length of this vector is [1 4T, (2n;+ 1)] /2.
For example, the 1D polynomial (or linear-phase FIR fil-
ter)

R(z)=342(z ' +2)+(z >+
is represented through the vector

r =

[32117;

containing the coefficients of its causal part.
The 2D polynomial of degree (1,1)

R(z1,22) = S5+4(z" +2)+3(mz ' +27'2)
+2(z )+ (77 g T+ an)

is represented through the 5-elements vector

r =

[543 21]1";

As the simplest example of POS3POLY use, let us com-
pute the minimum value of the above 2D polymomial on the
unit bicircle. This is equivalent to finding the largest u such
that R(z) — 1 > 0. The corresponding CVX program is

cvx_begin
variable mu;
maximize mu
subject to
r — muxeye(5,1)
cvx_end

== sos_pol ([1 1 11);

The function sos_pol creates variables that are positive
polynomials. (By default, they are trigonometric polynomi-
als.) The first argument of sos_pol has the form [n x|,
i.e. contains the degree of the polynomial and the size of its

coefficients (k = 1 for scalar coefficients). If only this argu-
ment is given, then the polynomial is globally positive. Since
POS3POLY uses sum-of-squares relaxation, the polynomial
is actually sum-of-squares of degree n. Running the above
program gives |t = —7, which is the true minimum value.

In the case of matrix coefficients, where Ry € C**¥ re-
places r in (3), the symmetry relation writes R_jy = Rﬂ’
(where the index  means transposition and complex con-
jugation). The polynomial is represented by a vector in the
style of (4), with r replaced by vec(Ry) (for k # 0) where
the operator vec concatenates the columns of Ry. Since Ry
is Hermitian, it is described by vectorizing (on columns) its
lower triangular part.

3. POSITIVITY ON INTERVALS

More generally, POS3POLY handles polynomials that are
positive on certain sets. In this section we present the case
of 1D polynomials, where one can describe positivity on in-
tervals or unions of disjoint intervals. Let such a union be

L

I = oy ). 5)
=1

To describe a polynomial that is positive on .# (and other
possible properties), the function sos_pol needs a second
argument, call it ptype, which is a structure. In this case,
only one field of the structure is used, namely ptype. int,
having the value

[6011 1 W12 W2 ... WL (OZL]-

(We will see later the use of other fields of ptype.)

As an introductory filter design example, let us consider
the peak-constrained least-square (PCLS) optimization [1] of
the linear phase filter of order 2n given by

n
T"H(R) =z" Y iz, hg=hy

k=—n

Assuming for simplicity that a lowpass filter is desired, the
passband and stopband edges @, and wy are given, together
with the passband and stopband error bounds ¥, and ¥;, re-
spectively. The PCLS problem consists of minimizing the
stopband energy E; subject to peak constraints in passband
and stopband:

min E; '
s.t. [1—=H(e/?)| <y, Yoc(0,0,)
H(e!?)| <75, Vo € [0, 7]

(6)

Denoting h = [hq hy ...h,]T, the stopband energy of the
filter is

E;=h"Ch, with C=PTCP >0, (7)
where
0o J,
P=|1 0
0 I,
(J, is the counteridentity matrix of size n x n) and C =
Toeplitz(co, cy,-..,cn) = 0, with
1—w/m, ifk=0;
=9 _Sinkey o,
km
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By showing explicitly the positive polynomials, extending to
upper passband bound to the whole frequency domain and
expressing the minimization of stopband energy as a second-
order cone constraint, the problem (6) becomes

min £ (8)
st.  |Cihl<e
1+7,—H(e/?) >0, Yo
H(ejw)71+’)/[7 207 Vo e [O,(Dp]
% —H(e/?) >0, Yo € oy, 7]
H(e/?)+ 7 >0, Yo € [a, 7]

Let us design a PCLS filter with n =34, @0, =0.37, 0, =
0.367, ¥, = % = 0.01. We start by introducing the data:

n = 34;

wp = 0.3%pi;
ws = 0.36xpi;
gep = 0.01;

gs = 0.01;

Then, we build the matrix describing the stopband energy
criterion

2«n + 1;
zeros( N, 1 );

Q=2

(1) =1-ws / pi;
(2:N) = -sin((1:N-1)+*ws) ./ (1:N-1)/pi;
= [ zeros(n,1) fliplr(eye(n)); ..
1 zeros (1, n) ;
zeros (n, 1) eye (n) 1;
C = real( sgrtm (P’ x toeplitz(c) % P) );

Next, we define the structures that characterize positivity in
passband and stopband

ptypep.int = [ 0 wp ];
ptypes.int = [ ws pi 1;
We are now ready to describe problem (8), which is simply

pl = eye(n+l,1);
cvx_begin
variable e;
variable h(n+1l);
minimize e;
subject to

norm(C = h) <= e;

(l+gp) *pl - h == sos_pol([n 1]);

h - (l-gp)*pl == sos_pol ([n 1],ptypep);

gs*pl - h == sos_pol([n 1],ptypes);

h + gsxpl == sos_pol([n 1],ptypes);
cvx_end

The code is practically self-explanatory ! There is no need
to know anything about the parameterization of trigonomet-
ric polynomials that are positive on an interval. Finally, we
compose the full vector of coefficients of the linear-phase fil-
ter by
H =

[h(end:-1:1); h(2:end)];

The frequency response of the designed filter is shown in Fig-
ure 1.
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Figure 1: Frequency response of PCLS designed filter.

4. POSITIVITY ON DOMAINS

For multidimensional polynomials, POS3POLY allows the
creation in CVX of polynomial variables that are positive on
domains of the form

L
@=Lﬁ%,%={zeﬂ|aﬂgzai=hg},@)
(=1

where Dj(z) are given trigonometric polynomials. To char-
acterize such domains, the structure ptype is again em-
ployed as second argument of sos_pol. Positivity do-
mains are described by the subfields of pt ype . dom, called
nunion, deg, coef and nc.

The field nunion is the vector [I; I ...Ir], i.e. contains
the number of polynomials defining each domain &, appear-
ing in the union (9). The other fields contain concatenated
information on the degrees and coefficients of the polyno-
mials Dj(z). There are two possibilities of describing the
polynomials Dj;(z). In the first, the field deg is a matrix
with I =1} + ...+ I rows, each row containing the degree of
a polynomial D;;(z). The field coef is a vector containing
the concatenated coefficients of the polynomials, enumerated
as in (4).

The second possibility assumes that the polynomials are
sparse and so it is more efficient to give their nonzero coeffi-
cients. The field nc is a vector of length I, whose elements
are the number of nonzero coefficients of the polynomials
Dji(z); deg is a matrix whose rows contain the degrees of
the monomials with nonzero coefficients and coef is a vec-
tor containing these coefficients.

As an illustration to the above, let us consider the prob-
lem of designing linear-phase 2-D FIR filters [5, Sect. 5.2]
with diamond passband and stopband

Dy ={we[-ma’ | |o]+|w| < w,},

10
P ={oc [-m.a? | |on] + o > o), 10

where 0 < @, < @y are given. The passband and stopband
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can be described by polynomial positivity through

Pp={2€T*| Dy (2) >0, Dp,(2) >0, D, (2) >0}

3
D5, ={z € T* | Dy, (z) > 0}
D5, ={z € T* | Dy, (2z) >0}
Dy, = {2 € T? | Dy (2z) >0}

Denoting ap = Cos Wy, a; = cos @, the polynomials appear-
ing above are

Dy (z1,22) = (nz2+z'%")/2—ap

Dp,(z1,22) = (5 'n+uz')/2—a,

Dy (z1,22) = (m+zN)/2+(22+2")/2 (1)
Dy (z1,22) = —(zz2+2'5")/2+ay

Dy,(z1,22) = —(zi'n+2z5")/2+a

Dy, (z1,22) —(z+g)/2— (2 +z")/2

For a polynomial that is positive on Z,, the field ptype is
described for POS3POLY via the following lines (ap stands
for a,)

ptypep.dom.deg = [1 1; 1 1; 1 1];
ptypep.dom.coef = [-ap O 0 0 0.5
-ap O 0.5 0 0 ...
0 0.50 0.5 01;

Since there is no field nunion, it is assumed that L = 1 in
(9). The field deg says that there are /; = 3 polynomials
whose positivity characterizes &,, all of degree (1,1). The
field coef contains the vector of concatenated coefficients
of the first three polynomials from (11).

Similarly, for Z, the description is

ptypes.dom.nunion = [1 1 1];

ptypes.dom.deg = [1 1; 1 1; 1 1];

ptypes.dom.coef = [as O 0 0 -0.5
as 0 -0.50 0 .
0 -0.50 -0.501;

Now, the field nuniontellsthat L=3and} =L =1 =1
in (9). The fields deg and coef are filled using the degrees
and coefficients of the last three polynomials from (11).
Assume that we want to design sparse 2D filters as in [9]
(see an alternative approach in the 1D case in [2]), starting
from the solution of the minimax optimization problem

min Y+ Azl (12)
st.  R(z)<1+vy, VzeT?

R(z)>1—-7v, Vz€ 9,

R(z) <7, Vz € J;

R(z) > —Y, Vz € Y

The optimization criterion mixes the maximum error bound

Y (with respect to the ideal response) and the 1-norm of the

vector of coefficients of the filter, with the aim of promoting

sparsity. The positive constant A is a trade-off weight. As-

sume that we want to design a filter (3) with n = (8,8) (hav-

ing a total of 289 coefficients, of which 145 distinct, this be-

ing the length of the vector r), taking @, = 0.57, &, = 0.97,

A =0.001. We set first the design data

n = [8 8];
ap = cos(0.5%pi);
as = cos(0.9%pi);

lam = 0.001;
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Figure 2: Frequency response of designed sparse 2-D filter.

Then, we set pt ypep and ptypes as described above. For
solving (12), we use the following sequence of instructions

M = (1 + prod(2xn+l)) / 2;
pl = eye(M,1);

cvx_begin

variable g;

variable r (M);

minimize g + lam*norm(r,1);

subject to
(1+g) *pl - r == sos_pol([n 11);
r - (1-9)*pl == sos_pol([n 1], ptypep);
gxpl - r == sos_pol([n 1], ptypes);
r + g*pl == sos_pol([n 1], ptypes);
cvx_end

Notice the similarity (in form) with the 1D problem from the
previous section. The sum-of-squares parameterization [4]
that replaces (and relaxes) the polynomial inequalities from
(12) is hidden.

The solution of (12) can be used for further optimization.
Assume that we want a filter with only N nonzero elements.
We select the N largest coefficients of the solution of (12)
and solve again (12) with A = 0 and forcing to zero the other
coefficients; the above code can be easily modified to this
purpose, so we skip the programming details. Hence, the
optimal values of the selected coefficients are obtained.

For example, by taking N = 193 (remind that the full fil-
ter has 289 coefficients), the optimal error is ¥ = 0.00559.
The frequency response is shown in Figure 2. By reoptimiz-
ing using the largest N coefficients of the optimal full filter
(obtained by solving (12) with A = 0), we get ¥ = 0.00672.
So, it indeed makes sense to introduce the 1-norm term in
the criterion, as shown also in [9], where all optimization is
based on discretization and linear programming.

5. BOUNDED REAL LEMMA

A causal trigonometric polynomial with matrix coefficients
has the form

H(z) = i Hyz ¥, (13)
k=0
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with Hy € C*1*%_ In POS3POLY, it is described by the
vector

[vec(Ho, o);vec(Hig . 0);...;vec(Hy 0..0);

14
vec(Ho,1,..0)s - -3 vec(Hyy )] (14

A Bounded Real Lemma (BRL) is an inequality
[H(z)l. <|A(2)], Vz € 2, (15)

where A(z) is a causal polynomial with degree n, but with
scalar coefficients, and & is defined as in (9). Such a BRL
can be described in POS3POLY through a single vector vari-
able that concatenates the vectors (14) for H(z) and (4) for
the symmetric polynomial R(z) = A(z)A(z~!). That such a
variable corresponds to a BRL is marked by the presence of
the field pt ype . br1. The only subfield needed for working
with CVX is hsize, which should contain the vector [k] k3]
giving the size of the matrix coefficients.

For illustration, let us consider the minimax design of ap-
proximately linear phase filters via the optimization problem

min Y (16)
s.t. |H(z) —zl_flz2_12| <v, Vze€ 9,
H(z)| <7, Vz €

where the passband and stopband domains are defined as in
(10) and 71, 7, € N. To solve this problem with POS3POLY,
we first set n, taul and tau?2 to the desired values of n, 7y,
Ty, respectively. We define pt ypep and ptypes like in the
previous section for describing the diamond-shaped domains
and add

ptypep.brl.hsize
ptypes.brl.hsize

(1 11;
(1 11;

for specifying that we deal with BLR inequalities. Next, we
define a few auxiliary variables:

Mh = prod(n+l);

Mr = (1 + prod(2xn+l)) / 2;
t = zeros (Mh+Mr,1);
t (tau2+(n(l)+1)+taul+l ) = 1;

Mh and Mr are the lengths of the vectors of coefficients of
H(z) and R(z) = ¥*; note that although in this case R(z) is
a constant, the corresponding coefficient vector is as long as
for a polynomial of degree n. The vector t represents the
monomial zfﬁ % ™ Denoting ¥ by g, the problem (16) is
solved by the code

cvx_begin
variable g;
variable hr (Mh+Mr) ;
minimize gj;
subject to

hr - t == sos_pol([n 1], ptypep);
hr == sos_pol([n 1], ptypes);
hr (Mh+l:end) == g * eye(Mr,1);

cvx_end

The first two equality constraints correspond to the BRL in-
equalities from (16), while the third represents the equality
R(z) =7’

6. CONCLUSIONS

The library POS3POLY lightens the programming burden in
convex optimization with positive polynomials, as we hope
that this paper made clear. The interested reader should go
to www.schur.pub.ro/pos3poly for more information and the
software itself. The user’s guide contains many design exam-
ples, including the SeDuMi version of the FIR filter design
problems treated here (also combining minimax and least-
squares optimization), but also regarding the design of ma-
trix filters, adjustable FIR filters, MIMO filters. Further work
will be directed to implementing faster alternative parameter-
izations.
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