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ABSTRACT
In this paper we propose a data-driven approach for speaker
identification without assuming any particular speaker
model. The goal in speaker identification task is to determine
which one of a group of known speakers best matches a given
voice sample. Here we focus on text-independent speaker
identification, i.e. no assumption is made regarding the spo-
ken text. Our approach is based on a recently developed man-
ifold learning technique, named diffusion maps. Diffusion
maps enable embedding of the recording into a new space,
which is likely to capture the speech intrinsic structure. The
algorithm is tested and compared to common identification
algorithms. Experimental results show that the proposed al-
gorithm obtains improved results when few labeled samples
are available.

1. INTRODUCTION

Automatic speaker recognition draws a growing interest
as modern communication systems develop. The goal in
speaker identification task is to determine which one of a
group of known speakers best matches a given voice sample.
It has a variety of applications in forensics, customer service
over telephone, biometric access control and more. In this
paper, we focus on text-independent speaker identification

Common identification algorithms have a typical struc-
ture, which consists of feature extraction, model training
given labeled data, and finally classification of unlabeled
samples. Usually, the first stage of these methods is of a
key importance, where various features are extracted to dis-
tinguish between different speakers. For instance, simple
and commonly-used features for speaker identification are
the Mel-Frequency Cepstral Coefficients (MFCC) and their
first and second derivatives, pitch, and a variety of vocal tract
parameters [1]. In this work, we put less emphasis on the fea-
ture extraction phase, and adaptively build an intrinsic repre-
sentation of the data.

In [2], Reynolds and Rose proposed a speaker identifica-
tion technique based on a Gaussian Mixture Model (GMM).
This model is considered one of the most successful likeli-
hood functions for stochastic modeling of speakers for text-
independent speaker identification [3]. A combination of
multiple Gaussian distributions is used to approximate the
shape of the spectral features of a speaker, allowing speaker
modeling using few statistical parameters. By increasing the
number of Gaussians, it is possible to increase the accuracy
of the model.

To date, many algorithms are based on the GMM model.
These methods usually obtain satisfactory results, however
they suffer from several drawbacks. First, the assumed GMM
model requires calibration of the model parameters. Sec-
ond, setting these parameters usually requires a large set of

labeled samples for training. Third, the performance and
complexity of these methods are heavily dependent upon the
number of speakers, since the GMM-based classification in-
volves computation of a score for each speaker model.

In this paper, we propose a data-driven approach
for speaker identification without assuming any particular
speaker model. Our approach is based on a recently de-
veloped manifold learning technique, termed diffusion maps
[4]. We assume that the input speech recordings are sam-
pled from a low-dimensional manifold lying in a high-
dimensional space. The samples are embedded into a new
space which parametrizes the manifold. We show that the
manifold parametrization, emerged based on the data, pro-
vides improved features. The embedding enables visualiza-
tion of the speech data in two or three dimensions, which
provides a notion of the similarity or disparity of the vocal
features of different speakers. In addition, the classification
is independent upon the number of speakers and requires a
small training set. Our experimental results demonstrate high
identification rate of speakers compared to alternative meth-
ods.

This paper is organized as follows: In Section 2 the iden-
tification algorithm is described. In Section 3 experimental
results are presented and analyzed, followed by conclusions
in Section 4.

2. SPEAKER IDENTIFICATION

The proposed identification is carried out in three steps:
1. Feature extraction - given training data of labeled speech

samples, a variety of auditory features are computed for
each sample in the training set. These features consti-
tute a feature vector that captures temporal and spectral
properties of a speech sample.

2. Manifold learning - the feature vectors of the training
data are embedded into a new Euclidean space. The em-
bedded space conveys parametrization in a manifold us-
ing diffusion maps [4]. The embedded samples are di-
vided into clusters of speakers according to their labels.

3. Classification - based on the parametrization of the train-
ing set, we find the embedding of new unlabeled samples
using geometric harmonics [5]. Using k-NN algorithm
we associate the new embedded samples with one of the
clusters corresponding to a certain speaker.

2.1 Feature Extraction
We use the Mel Frequency Cepstral Coefficients (MFCC)
[6] to characterize different speakers. Let {xi}M

i=1 denote a
training data set of M speech samples of several speakers.
We assume a sampling frequency of 8 kHz. For each train-
ing sample we calculate the MFCC and their first temporal
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derivative (delta-MFCC) using 40 subbands for short frames
of 64 ms each. We then take the first 13 coefficients and cal-
culate the mean, variance, minimum and maximum for the
MFCC and mean and variance for the delta-MFCC across
all frames of a recording. Consequently, we obtain a 78-
dimensional feature-vector for each recording. Collecting all
the vectors constitutes a high-dimensional data set {yi}M

i=1,
where each point yi is the feature vector corresponding to the
speech sample xi.

2.2 Diffusion maps framework
In order to capture the subtle properties of different speak-
ers we compute a large number of features, which implies
a high-dimensional feature vector. To cluster such high-
dimensional data efficiently - dimensionality reduction needs
to be applied. The feature vectors can be seen as points in a
high-dimensional space. We study the intrinsic geometry of
the points using diffusion maps.

The common approach when using Diffusion Maps is to
define an affinity metric k (xi,x j) between pairs of speech
samples based on the corresponding features using the fol-
lowing Gaussian kernel

k (xi,x j) = exp

{
−
∥∥yi− y j

∥∥2

2σ2

}
(1)

where σ2 is the variance of the Gaussian kernel which deter-
mines the scale of the affinity metric.

Since the characteristic scale of different features is non-
homogeneous, instead of using a uniform scale control σ2

for all features we use a different value for each element.
The kernel has now the form

k (xi,x j) = exp
{
−1

2
(yi− y j)

T
ε
−1 (yi− y j)

}
(2)

where εN×N = diag(ε1, ...,εN) and N is the number of fea-
tures. Using a different scale for each feature takes into ac-
count its range of values which might differ from that of other
features. The scale εi is chosen as the variance of the i-th fea-
ture across all samples, multiplied by some constant C (re-
ferred to as a scale control parameter). The constant value is
chosen empirically according to an optimization performed
during the training stage.

We view the vectors {xi}M
i=1 as nodes of an undirected

symmetric graph. Two nodes xi and x j are connected by an
edge with weight k (xi,x j), that corresponds to the affinity
between xi and x j. We continue with the construction of a
random-walk on the graph nodes by normalizing the kernel k
[7]

p(xi,x j) = k (xi,x j)/d (xi) (3)

where d (xi) = ∑ j k (xi,x j). Consequently, p(xi,x j) repre-
sents the probability of transition in a single step from node
xi to node x j. Similarly, let pt (xi,x j) be the probability of
transition in t steps from node xi to node x j. Let K de-
note the matrix corresponding to the kernel function k, and
let P = D−1K be the matrix corresponding to the transition
function p, where D is a diagonal matrix with Dii = d (xi).
Accordingly, Pt is the matrix corresponding to the transition
function pt .

Another possible normalization of the kernel k is the
symmetric normalization that approximates the Fokker-
Planck operator [4]

psym (xi,x j) =
k (xi,x j)√

d (xi)
√

d (x j)
. (4)

It is called symmetric for being represented by a symmet-
ric affinity matrix

Psym = D−
1
2 KD−

1
2 . (5)

This normalization is less sensitive to the distribution of sam-
ples and therefore has advantages in representation of non-
uniformly sampled data.

In our implementation we slightly modify the kernel. We
enlarge the connections between the points in the same clus-
ter by setting the affinity of the point to itself to 0, formulated
as

k (xi,x j) =

{
exp
[
− 1

2 (xi− x j)
T

ε−1 (xi− x j)
]

i 6= j

0 i = j
. (6)

Thus, the normalization (3) is not affected by the trivial affin-
ity between the point to itself, and connections to other points
are emphasized. It results in a better embedding and in-
creases the correct identification percentage.

Spectral decomposition [7] is employed to describe P,
enabling to study the geometric structure of the data in a
compact and efficient way. It can be shown that P has a com-
plete sequence of left and right eigenvectors

{
ϕ j,ψ j

}
and

eigenvalues, written in a descending order 1 = λ0 ≥ λ1 ≥
λ2 ≥ . . . , satisfying Pψ j = λ jϕ j.

The construction of the random walk and the spectral
decomposition lead to a definition of a new affinity metric
Dt (xi,x j) between pairs of samples, given by

D2
t (xi,x j) =

∥∥pt (xi, ·)− pt (x j, ·)
∥∥2

ϕ0

=
M

∑
k=1

(pt (xi,xk)− pt (x j,xk))
2 /ϕ0 (xk) (7)

for any integer t. This metric is termed diffusion distance
as it relates to the evolution of the transition probability dis-
tribution pt . It enables to describe the relationship between
pairs of samples in terms of their graph connectivity. More-
over, its main advantage is integration of local affinities into a
global metric. It can be shown that the diffusion distance out-
performs the Euclidean and the Geodesic distances in many
cases.

We use the right eigenvectors
{

ψ j
}

of the transition ma-
trix P to obtain a new data-driven description of the M sam-
ples {xi} via a family of mappings that are termed diffusion
maps [4]. Let Ψt (xi) for some t > 0 be the diffusion map-
pings of the set {xi} into a Euclidean space R`, defined as

Ψt (xi) =
[
λ

t
1ψ1 (xi) , . . . ,λ

t
`ψ` (xi)

]T (8)

where ` is the new space dimensionality of our choice, rang-
ing between 1 and M−1. We note that a fast decay of

{
λ j
}

may enable dimensionality reduction, as coordinates in (8)
become negligible for large `.
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It can be shown [4] that the diffusion distance (7) equals
the Euclidean distance in the diffusion maps space for ` =
M−1, i.e.

D2
t (xi,x j) =

∥∥Ψt (xi)−Ψt (x j)
∥∥2

. (9)

This result provides a justification for using the Euclidean
distance in the new space for clustering and classification
tasks. In particular, since the spectrum is fast decaying for
a large enough t, the diffusion distance can be well approxi-
mated by only the first few ` eigenvectors, yielding efficient
comparisons. Similar spectral decomposition and embed-
ding are applied to Psym as well.

2.3 Classification
The training stage consists of feature extraction for all sam-
ples in the training set and computation of their correspond-
ing embedding. To classify a new sample x as a recording of
one of the known speakers, we repeat the feature extraction
process and obtain a new feature vector y. In order to find
the coordinates of the embedding of the new sample Ψt (x)
we use geometric harmonics[5]. It is based on the following
Nyström extension of the eigenvectors

ψ j (x) =
1
λ j

M

∑
i=1

p(x,xi)ψ j (xi) . (10)

We note that the Nyström extension of the eigenvectors agree
on the training set, i.e. ψ j (xi) = ψ j (xi) ,∀i = 1, . . . ,M. We
refer to ψ j (x) as extended eigenvectors. It is the approxi-
mation of the embedding coordinates for a new sample using
the eigenvectors of the transition matrix calculated for the
training set.

Based on the extended eigenvectors {ψ j}, the new sam-
ple embedding Ψt(x̄i) is computed. Then, we apply k-NN
classification to associate Ψt (x) with a certain speaker. In
our implementation we use k = 10.

3. EXPERIMENTAL RESULTS

The experimental study was conducted with YOHO speaker
verification database [8]. The corpus consists of 106 male
and 32 female speakers pronouncing “combination lock”
phrases. There are 24 enrollment and 10 verification ses-
sions per speaker. For all measurements we have repeatedly
chosen random subsets of speakers from the whole set, and
averaged the obtained values to present results that are inde-
pendent of specific speakers choice.

Our empirical tests show that using our modification of
the kernel scale yields better results. Moreover, based on
these tests, we calibrated the scale control parameter.

In Fig. 1 and 2 we show the diffusion map embedding of
the feature vectors of five different speakers, using both the
symmetric normalization and random-walk normalization.
We observe a clear clustering of speakers and distinct sep-
aration between points associated with different speakers. In
particular, the presented 3-dimensional embedding enables
visualization of the speakers voice similarity. Therefore such
an embedding might be useful for finding the “sheep” and
“wolves”1 among many speakers.

1“Sheep” - the default speakers for which recognition systems perform
well. “Wolves” - speakers whose voice features are exceptionally similar to
features of other speakers.

Figure 1: Embedding into R3 of features of 5 speakers using sym-
metric normalization. First three nontrivial eigenvectors were used
for the embedding, at time t=3.

Figure 2: Embedding using Markovian random-walk matrix. First
three nontrivial eigenvectors were used for the embedding, at time
t=3.
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Diffusion Maps GMM k-NN
Num. of Random Symmetric
speakers Walk

2 100% 100% 100% 99.2%
3 99.5% 99.3% 99.5% 98.2%
5 99.4% 99.1% 99.5% 97.7%
10 97.8% 96.9% 98.1% 95.1%
20 94.4% 93.2% 97.5% 92.0%

Table 1: Evaluation of Diffusion Maps, k-NN and GMM classifiers for
different numbers of speakers. The table presents the average correct classi-
fication percentage of each algorithm.

Diffusion Maps GMM k-NN
Num. of Random Symmetric
speakers Walk

2 98.2% 99.1% 97.4% 97.9%
3 97.8% 98.7% 95.2% 97.8%
5 96.5% 96.0% 92.1% 93.4%
10 92.5% 91.9% 87.4% 89.0%
20 86.4% 84.6% 83.3% 84.5%

Table 2: Evaluation of Diffusion Maps, k-NN and GMM classifiers for
the case of few labeled samples. The table presents the average correct clas-
sification percentage of each algorithm.

We compare the correct identification rate of the pro-
posed classifier with two other classifiers, one based on
a GMM implementation described in [9], configured to 5
Gaussians, and the other classifier based on classification us-
ing k-NN in the original feature space, with k = 10. All the
classifiers rely on the same features. We compare the three
classifiers for different numbers of speakers, averaging the
results of multiple tests. The results are presented in Table
1. In this experiment the size of the training set containing
labeled samples is 9 times larger than the size of the test set.
We can see that diffusion maps perform better than k-NN for
every number of speakers, and is comparable to GMM for a
small number of speakers. When the number of speakers in-
creases there is a degradation in the performance of diffusion
maps compared to GMM.

In a second experiment, we compare the correct classifi-
cation rate for a scenario in which we have few labeled sam-
ples. The samples are partitioned such that the training set
containing labeled samples is 4 times smaller than the size
of the test set. The classification results are presented in Ta-
ble 2. We see that Diffusion Maps yield better results than
GMM and k-NN for each number of speakers in the test.

In both experiments the random-walk normalization out-
performs the symmetric normalization for every number of
speakers. However, for visualization purposes, we might pre-
fer to use the symmetric normalization and count the “rays”
formed by the embedding of feature vectors associated with
those speakers (as emerged in Fig. 1).

4. CONCLUSIONS

We have applied a manifold learning method to the speaker
identification task. Our method utilizes relatively simple fea-
tures and relies on the embedding to capture the perceptual
variability of the data. We have demonstrated that classifi-
cation using diffusion maps can outperform nearest neigh-
bors in the original feature space. It can also outperform the
Gaussian mixture speaker model, which is used in common
speaker-identification algorithms to-date. Our modification
to the commonly used Gaussian kernel can be further tested
in other applications. We have also demonstrated diffusion
maps as a helpful visualization method for speech data.
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