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ABSTRACT

A p-shift finite impulse response (FIR) unbiased estimator
(UE) is addressed for linear discrete time-varying filtering
(p = 0), p-step prediction (p > 0), and p-lag smoothing
(p < 0) of signal models in state space with no require-
ments for initial conditions and zero mean noise. A solution
is found in a batch form and represented in a computation-
ally efficient iterative Kalman-like one. It is shown that the
Kalman-like FIR UE is able to overperform the Kalman filter
if the noise covariances and initial conditions are not known
exactly, noise is not white, and both the system and measure-
ment noise components need to be filtered out. Otherwise,
the errors are similar.

1. INTRODUCTION

For such unsuited applications of the Kalman filter (KF) [1]
as estimation of nonlinear models, under unknown initial
conditions, and in the presence of nonwhite or multiplica-
tive noise sources, the Kalman-like one is often designed to
save the recursive structure, while connecting the algorithm
components with the model in different ways. Because there
can be found an infinity of Kalman-like solutions depend-
ing on applications, we meet a number of propositions sug-
gesting some new qualities while saving (or not deteriorating
substantially) the advantages of KF: fast computation and ac-
curacy.

Cox in [2] and others have derived the extended KF
(EKF) for nonlinear models by a linearization of the state-
space equations. Referring to the fact that EKF can give par-
ticularly poor performance when the model is highly nonlin-
ear [3], Julier and Uhlmann employed in [4] the unscented
transform and proposed the unscented KF (UKF). Both EKF
and UKF have then been used extensively and the former
was developed in [5] to the invariant EKF for nonlinear
systems possessing symmetries (or invariances). For high-
dimensional systems, the ensemble KF was proposed by
Evensen in [6] and, for systems with sparse matrices, the fast
KF applied by Lange in [7]. Applications has also found the
robust Kalman-type filter designed by Masreliez [8] [9] for
linear state-space relations with non-Gaussian noise referred
to as heavy tailed noise or Gaussian one mixed with outliers.
Useful Kalman-like algorithms can also be found in works by
Nahi [10], Basseville et al. [11], Baccarelli and Cusani [12],
Ait-El-Fquih and Desbouvries [13], Carmi et al. [14], Ste-
fanatos and Katsaggelos [15], and the list can be extended.

In spite of great efforts in extending the applications and
improving the performance of KEF, its structure still remains
recursive thus with the infinite impulse response (IIR). In-
vestigating in [3] both the IIR and finite impulse response
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(FIR) filters, Jazwinski resumed that the limited memory fil-
ter (having FIR) appears to be more robust against the un-
bounded perturbation in the system. Referring to [3], opti-
mal FIR filtering has been developed by W. H. Kwon et al.
in [16]. There were also proposed several Kalman-like FIR
estimators by Kwon ef al. in [17], Han et al. in [18], and
Shmaliy in [19]. A distinctive feature of such algorithms is
that white Gaussian noise in the convolution-based estimate
obtained over N past measured points is reduced as a recipro-
cal of N [20] disregarding the model [19]. Moreover, the un-
biased and optimal FIR estimates typically become strongly
consistent if N occurs to be large [21] or the mean square ini-
tial state function dominates the noise covariance functions
in the order of magnitudes [19]. It is also known that the op-
timal horizon N, makes the FIR estimate (optimal or unbi-
ased) similar or even better than the Kalman one [16,19-23].

Owing to the exciting engineering features of the
Kalman-like FIR algorithms uniting advantages of KF and
inherent properties of FIR structures such as the bounded
input/bounded output (BIBO) stability as well as better ro-
bustness against temporary model uncertainties, non Gaus-
sian noise, and round-off errors, it may be expected that the
FIR unbiased estimator (UE) ignoring noise and initial con-
ditions will serve efficiently instead of optimal filters in many
applications.

2. SIGNAL MODEL

Consider a class of discrete time-varying (TV) linear state-
space models represented with the state and observation
equations, respectively,

Aan,1 + ann 3
Cpx, +Dyv,,

ey
@)

where x, € RX and Y € RM are the state and observation
vectors, respectively. Here, A, € RE*K B, ¢ REXP, C, ¢
RM>K and D,, € RM*M  The vectors w,, € R and v,, € RY
are zero mean, E{w,} = 0 and E{v,} = 0. It is implied
that w,, and v, are mutually uncorrelated and independent
processes, E {wivjr} = 0, having arbitrary distributions and
known covariances

Qu(i,j) = 3)

Qi,j) = “)
for all i and j, to mean that w, and v,, should not obligatorily
be Gaussian and delta-correlated.

Following the strategies of the recursive KF [1] and it-
erative Kalman-like FIR unbiased filter (UF) [19], the TV

Xn

Yn =

E{winT»},

E{vivjr},
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Figure 1: Strategies of the recursive KF and iterative
Kalman-like FIR UF algorithms.

estimates of x;, can be obtained as shown in Fig. 1. Here,
KF starts at some initial point n — N + 1, where N > 2, with
known initial conditions and recursively produces estimates
at each subsequent point up to n. The estimate is formed in
two steps. First, the system matrix A,_y, makes a projec-
tion from n — N +1 to n — N + 2 and then the Kalman gain
adjusts the result to be the estimate at n — N +2. The pro-
cedure repeats recursively, provided the covariances of white
noise sequences.

The Kalman-like FIR UF does not require the noise per-
formance and initial conditions [24], but needs an optimal
averaging horizon Nop [25] in order for the estimate to have
the minimum mean square error (MSE) and be consistent to
the Kalman one [19,22]. This filter starts with any unknown
value at n — N + 1 and iteratively produces estimates at sub-
sequent points in two steps similarly to KF, although the true
value is taken only at n when N = Nop;. The algorithm oper-
ates in any noise environment that makes it highly attractive
for engineering applications.

3. TIME-VARYING BATCH UNBIASED FIR
ESTIMATOR

In order to find the FIR UE, (1) and (2) can be extended on a
horizon of N points from m = n— N + 1 to n following [26]
and similarly to [21] as, respectively,

An,mxm + Bn,mWn,m , (5)

Xn,m =
Y ChmXm + Gn,mwn,m + Dn,mvn,m s (6)

nm =

where X, , € REN Yum€ RMN | Wm € RPN and Vum €
RMN are specified by, respectively,

Xom = [Xn %1 x] )
Youm = [yIyl,..¥h]", ®)
Won = [wiwl, .. wh]" ©)
Vo = [VIvI, VBT, (10)

and A, € REN*K C,, ,, € RMV>K G, ,, € RMNXPN and
D, € RMN*MN are given with, respectively,

A = [%m“’%ﬁ”...A,{mI Toan
C”%mﬂ
Co1 ™!
Cim = , (12)
Cm+1Am+1
m
Gn,m = Cn,mBn,ma (13)
Dyw = diag(DnD,,,l...Dm), (14)
N
where we assigned & ¢ = Ig[A,H-, Com =

i=h
diag(C,, Coi ... c) and performed B,,,, € REN<PN a5
—_———

N
Bn,m
B, Aanfl %m+2Bm+] sznm+l By
0 an 1 JZ{,,WiJizBmJﬁ %nfil Bm+1
0 0 oo Bm+1 Am—HBm
0 0 . 0 B,,

15)
The model, (5) and (6), suggests that the state equation at
the initial point m is x,, = X, + B, w,, that for B,, special-
ized with (15) can uniquely be satisfied with w,, zero-valued.
The initial state x,, must thus be known a priori or estimated
optimally a posteriori as shown in [19].
By the convolution, the estimate! Xt pln Of X, can now
be obtained if we assign a K x MN gain matrix H,, ,,(p) and
claim that

inerIn H, (P)Yn,m (16a)
= Huyu(p)(ComXm~+ GumWnm
+Dnm Vam) - (16b)

The estimate (16a) will be unbiased if and only if the
following unbiasedness condition is satisfied

E{in+p\n} = E{Xn+11}7 (17)

where E means averaging of the succeeding relation.

Averaging in (16b), by (17), means removing the
zero mean noise matrices that gives us E{X,ip.} =
H,,.u(p)CrmXm, where H,, ,,(p) is the FIR UE gain. In turn,
E{x,} can be substituted with the first vector row of (5) by
removing noise as E{x,} = «/"*1x,,. Since n can be arbi-
trary, one can substitute it with n+ p and write

E{Xuip} = 0 X (18)

Equating E{X, |} to (18) leads to the unbiasedness
constraint for TV models

%ﬁ;l = I:In,m(p)cn,m . (19)

1% pln 18 an estimate at n-+ p via measurement from the past to n; X, |,
mean optimal and X, |, unbiased.
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If we further multi]r)ly (19) from the right hand sides with
the identity matrix (C;.,,Cym) ' Cl,,Cym and then remove
C,,m from both sides, we go to

H,.(p) =« (CL,,Com) ' CL, (20)

n+p

representing the gain of the TV FIR UE. It can easily be ver-
ified that (20) becomes that derived in [19] for time-invariant
(TT) models.

Provided (20), the TV batch FIR UE is specified by the
following theorem, which proof belongs to (5)-(20).

Theorem 1 Given (1) and (2) with zero mean mutually un-
correlated and independent w,, and v, having arbitrary dis-
tributions and known covariance functions. Then, filter-
ing (p =0), p-lag smoothing (p < 0), and p-step predic-
tion (p > 0) are provided at n+ p using data taken from
m=n—N+1 to n by the batch FIR UE as

in-&-p\n I:In,ln(P)Yn,m (21a)
A (ComCin) ™ Con Yo, (210)

where C,, ,, is given by (12) and Y , , is the data vector (8).

4. TIME-VARYING KALMAN-LIKE ESTIMATOR

Although theorem 1 establishes an exact convolution-based
rule to estimate unbiasedly the TV state at n as shown in Fig.
1, the computational problem arises when N >> 1 owing to
large dimensions of all of the matrices and vectors. For fast
computation, the batch FIR UE (21b) can be represented in
an iterative Kalman-like form stated by the following theo-
rem, which proof is similar to that given in [19].

Theorem 2 Given the batch FIR UE (theorem 1). Then its
iterative Kalman-like form is the following:

Rip = ArpXipo1-1+ A, X (p)F.CP
x[y1 = CiX1(p)Xigp-1ji-1] s (22)
in which
szall, p<—1 (smoothing)
Ay, p=0  (filtering)
Yi(p) = lI, p=1 (prediction)
[MA L, p>1 (prediction)
i=I
_ T Ty—17-1
F; [CICi+(AF LA, (23)
Reopls = A5 PCL Yo, (24)
Fs _ %’n+1PfKZZVm+1T , (25)
P = (CL,Com) ", (26)

where s =m~+K —1, m=n—N+1, and an iterative variable
l ranges from m+ K to n, because CleCLm is singular with
| <m+ K. The true estimate corresponds to |l = n.

As can be seen, (22) is the Kalman estimate, in which
A, X (p)F,CT plays the role of the Kalman gain that,
however, does not depend on noise and initial conditions.
The algorithm has two batch forms, (24) and (25), which can
be computed fast for small K.

Table 1: Full-Horizon TV Kalman-Like FIR UE Algorithm

Stage
Given: K,p,n>2K
Set: Y,.(p) by (23)
P =(Ck_;(Cx-10)""
Fx 1=} Pl
XK+p—1K—1 = %IéerflPCIT(fl,OYK*lvo
Update: F,=[CIC,+ (A, F, A)~1]"!

)_(n+p\n = An+pxn+pfl\nfl
+An+ﬂT;1 (P)FACyy
X [yn -G, X, (p))_(nerfl \nfl]

4.1 Full-Horizon Time-Varying Kalman-Like Estimator

In special cases when noise is nonstationary or both the sys-
tem and measurement noise components need to be filtered
out, all the data available should be processed. By letting
N=n+1and [l =n > K in (22)—(26), the relevant full-
horizon algorithm becomes as shown in Table 1 and, for TI
models, simplifies to that proposed in [19]. As can be seen,
the algorithm (Table 1) requires only K and p, thus has ex-
tremely strong engineering features.

4.2 Error Bound

Provided H,,,(p), the estimate error bound can be ascer-
tained via the noise power gain (NPG) in the three-sigma
sense as follows:

EByug) (n,N, p) = 36K, (n,N, p) @7)

where oy, is the noise variance of the measurement of the kth
state and Ky, (1, N, p) is the (vg)th component of the square

NPG matrix Ky £ Ky (n,N, p) specialized as Ky = 4.7, .
Here the thinned K x N gain 5%, = (H,, (p))k is composed
by Kth columns of H,,,,(p) starting with the kth one.

5. EXAMPLES OF APPLICATIONS

Below, we provide filtering with p = 0 and prediction with
p > 0 of the two-state polynomial model, (1) and (2), speci-
fiedwithB,=1,D,=1,C,=[10], and

a=[ ) O3]

where d, temporary takes different values. Such a situa-
tion occurs in oscillators undergoing temporary frequency
“jumps” or in moving vehiculars with velocity “jumps”. For
TI filtering, d,, represents uncertainty and, in the TV case, d,
is supposed to be known exactly. We mostly allow noise to
be white Gaussian, noticing that the relevant investigations
for the uniformly distributed and highly intensive sawtooth
noise were provided in [20-22,24,29,30].

(28)
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Figure 2: Errors of Kalman and Kalman-like FIR unbiased
filtering of the first state of a polynomial model: (a) TI filter-
ing and (b) TV filtering.

5.1 Filtering with Errors in Noise Covariances

In this experiment, we allow x19 = 1, xa9 = 0.01/s, 67 =
1074, 622 =4x107%/s%, and 6, = 0.15. An uncertainty
is induced with d = 5 from 160 to 200. Because the sys-
tem noise is often hard to determine exactly, we reduce the
standard deviations in the first and second states by the fac-
tors of 2 and 4, respectively, to have 612 =0.25x 10~ and

=0.25x 1079/ s. Figure 2 gives us a typical reproducible
example of errors in the KF and Kalman-like FIR UF for this
case. One notes that the Kalman-like filter outperforms the
Kalman one in both the TI case (Fig. 2a) and TV case (Fig.
2b), as being independent on noise performance.

5.2 Prediction of a Distinct Model

An objective of this study is to predict future behavior of the
TV model. It follows from (22) that the Kalman-like FIR
unbiased prediction can be organized at any fixed n, by in-
creasing a step p > 0. In turn, the Kalman prediction can be
obtained if to project the estimate from n to n+ p as follows:

— drH»l s

n+p Xn‘n . (29)

in-&—p\n

The process was simulated with x19 = 1, x0 = 0.01/s,

o} = 1075, 6 = 107*/s2. Measurement was provided with

the uniformly distributed non-Gaussian noise having 62 =

0.04 and associated with sawtooth induced by the Global Po-

sitioning System timing receiver. A temporary uncertainty
was organized with d,, = 20 from 150 to 152.
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Figure 3: Typical errors of the Kalman and Kalman-like FIR
unbiased prediction of the model behavior: (a) distinct model
and (b) errors in the noise variances and initial conditions.

Figure 3a shows the predicted behaviors for known vari-
ances and initial conditions. Instead, Fig. 3b sketches the
trends affected by not fully known ones, in which case we
increase the standard deviations in the first and second states
by the factors of 2 and 4, respectively, and allow for x19 =2
and xy9 = 0.03/s. On the whole, the Kalman-like predictor
outperforms the Kalman one here, although the estimate dif-
ference is most brightly pronounced in Fig. 3b.

6. CONCLUSION

We proposed and investigated a Kalman-like FIR UE in-
tended for filtering (p = 0), p-step prediction (p > 0), and
p- lag smoothlng (p < 0) of discrete TV state-space models,

ignoring noise and initial conditions. The most common con-
clusions that can be made are the following. In the ideal case
of a model, initial conditions, and white noise covariances,
all known exactly at each time point, the optimal Kalman fil-
ter inherently outperforms the unbiased FIR one, typically
on several percents in terms of the MSE. The latter is able
to overperform the former otherwise and if both the system
and measurement noise components need to be filtered out.
Examples considered have demonstrated better robustness of
the FIR UE against the KF, although we made no efforts to
improve this performance. A natural payment for these ad-
vantages is an about N time larger consumption of the com-
putation time in the Kalman-like iterative procedure.
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