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ABSTRACT
We address an exact noise power gain (NPG) matrix for the
p-shift linear time-variant transversal finite impulse response
(FIR) estimator intended for filtering (p = 0), p-step predic-
tion (p > 0), and p-lag smoothing (p < 0) of discrete-time K-
state space system models with M states measured. We also
propose a new error bound (EB) formed in the three-sigma
sense with the NPG and measurement noise variance. A fast
iterative algorithm for NPG and EB of the p-shift unbiased
FIR estimator is provided along. It is demonstrated that the
unbiased FIR and Kalman estimates well range within a gap
between EB and −EB.

1. INTRODUCTION

A distinct advantage of the transversal finite impulse re-
sponse (FIR) estimators against the recursive infinite impulse
response (IIR) ones is the imbedded bounded input/bounded
output (BIBO) stability. This fact was mentioned by Johnson
in [1], while extending the optimal Wiener filter theory to
finite discrete time n, and supported with an asymptotic for-
mula for the output noise power (variance) σ 2

out. Soon after,
in [2], Blum generalized Johnson’s result and showed that
there exists an exact ratio of σ 2

out to the input noise power
σ 2

in. This ratio is now known as the noise power gain (NPG).
During decades, the NPG metric has been invoked to

many investigations as a convenient measure of noise reduc-
tion and denoising. After Blum [2], Trench proved in [3] that
NPG for white Gaussian noise is the sum of the square co-
efficients of the finite impulse response (FIR) filter gain h(n)
of length N,

NPG =
σ 2

out

σ 2
in

=
N−1

∑
n=0

h2(n) .

From [2], we also learn that polynomial signals with white
Gaussian noise make NPG equal to the FIR filter gain at zero.
These and other useful properties of NPG associated with
polynomial signals were recently outlined in [4–6]. We meet
NPG as a characteristic of FIR filters, predictors, smoothers,
and differentiators in [4–13] and in many other papers. In a
somewhat sophisticated way the concept of NPG was used in
[14] while analyzing an unbiased impulse response estimator
and in [15] to characterize errors in adaptive filters. Some
authors determine NPG via the noise transfer function [16],
following Trench [3] and the development made by Kuo [17].
It can also be noticed that NPG suitable for unbiased filtering
is a special case of the noise figure [18] commonly used in
wireless communications.

The aforementioned results relate to single input/single
output (SISO) estimators. One of us discussed in [19] the

NPG matrix for single input/multiple output (SIMO) ones.
Still no NPG form was addressed for multiple input/multiple
output (MIMO) estimators associated with M states mea-
sured in the K-state model. The estimate error bound (EB)
was not proposed for the MIMO estimators as well.

Below, we develop NPG for the p-shift time-variant
MIMO estimator intended for filtering (p = 0), p-step pre-
diction (p > 0), and p-lag smoothing (p < 0) of linear dis-
crete time-varying state-space models. Based upon the NPG
form proposed, we specify the EB in the three-sigma sense
via the measurement noise variance and investigate it numer-
ically. We show that the unbiased FIR and standard Kalman
estimates range well within a gap between EB and −EB.

2. SIGNAL MODEL

Consider a time-varying model, measured in the presence of
additive noise and represented with the state and observation
equations, respectively,

xn = Anxn−1 +Bnwn , (1)
yn = Cnxn +Dnvn , (2)

where xn ∈ ℜK and yn ∈ ℜM are the state and observa-
tion vectors, respectively. Noise wn ∈ ℜP is zero mean,
E{wn} = 0, with any distribution and known covariance
function. Noise vn ∈ ℜM is also zero mean, E{vn} = 0,
but represented in white Gaussian approximation with known
variances, σ 2

1 , . . . , σ 2
M . Vectors wn and vn are supposed to

be mutually independent and uncorrelated, E{wiv
T
j } = 0,

for all i and j. Here,An ∈ℜK×K ,Cn ∈ℜM×K , Bn ∈ℜK×P,
andDn ∈ℜM×M .

On a finite interval of N points, from m = n−N +1 to n,
the p-shift estimate of xn can be found via the convolution
[21] with the K×MN FIR gainH,H(n,N, p) [19,20]. For
such an estimator, the estimate noise en (output) caused by
vn (input) can be determined at n+ p as

en+p =HVn,m , (3)

where H must be substituted with HDn,m if Dn is not iden-

tity,Dn,m = diag
(

Dn Dn−1 . . .Dm
︸ ︷︷ ︸

N

)

, and the MN×1 obser-

vation noise vector is

Vn,m =
[
vT

n v
T
n−1 . . . vT

m
]T

. (4)

The estimate noise K × K covariance matrix J ,
J(n,N, p) can thus be written as
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J = E{en+pe
T
n+p} (5a)

= HE{Vn,mV
T
n,m}H

T , (5b)

where E{x} means an average of x.
The problem now formulates as follows. We would like

to investigate (5b) and derive an exact NPG matrix in order to
evaluate the main and cross denoising effects in the estimator
channels. We also wish to find a computationally efficient
form for NPG and consider a typical example.

2.1 Noise Power Gain in State Space
In order to specify NPG in state space, (5b) can be trans-
formed for the white Gaussian components inVn,m to

J=HΦHT , (6)

where

Φ = E{Vn,mV
T
n,m} (7a)

= diag
(

σ 2
1 . . . σ 2

M σ 2
1 . . . σ 2

M . . . σ 2
1 . . . σ 2

M
︸ ︷︷ ︸

MN

)

. (7b)

By (7b), the covariance matrix (6) acquires an equivalent
form of

J= σ 2
1K1 +σ 2

2K2 + · · ·+σ 2
MKM , (8)

in which Kk ,Kk(n,N, p), k ∈ [1,M], is the generic K×K
NPG matrix associated with the kth measured state,

Kk =HkH
T
k , (9)

where the generic K×N gainHk ,Hk(n,N, p) is composed
by Kth columns of H starting with the kth one. The generic
NPG matrix is hence formed as Kk = 1

σ2
k
Jk, where Jk is as-

sociated with the kth constituent in the series (8).
Most generally,Hk can be written as

Hk =
[
hT

k1 . . . hT
kk . . . hT

kK

]T
, (10)

where hkv , hkv(n,N, p), v ∈ [1,K], is

hkv =
[

hkv0 hkv1 . . . hkv(N−1)

]
(11)

and the p-shift generic component hkvi , hkvi(n,N, p), i ∈
[0,N − 1], represents an estimator channel gaining the kth
input to the vth output at n. The K×K NPG matrix (9) can
hence be represented in the form of

Kk =











Kk(11) . . . Kk(1k) . . . Kk(1K)
...

. . .
...

. . .
...

Kk(k1) . . . Kk(kk) . . . Kk(kK)
...

. . .
...

. . .
...

Kk(K1) . . . Kk(Kk) . . . Kk(KK)











. (12)

The main component Kk(kk) = hkkh
T
kk occupies a central

place in (12), representing the k-to-k channel. Other impor-
tant ones, Kk(vv) = hkvh

T
kv, v 6= k, placed on the main diag-

onal characterize the k-to-v channels. The remaining ones
Kk(vg) = hkvh

T
kg, g 6= k 6= v, g ∈ [1,K], play rather an auxil-

iary role. They represent interactions in the estimator chan-
nels and complete the noise reduction picture.

3. ERROR BOUND

Provided Kk, the estimate error bound (EB) can be special-
ized in the three-sigma sense as follows:

EBk(vg)(n,N, p) = 3σkK1/2
k(vg)

(n,N, p) , (13)

where σk is the measurement noise standard deviation, Kk(vg)

is a component in (12), and an index k(vg) means that EB
is specified for the interacting vth and gth estimator channels
via measurement of the kth state.

By the components of (12) placed on the main diagonal,
the relevant value EBk(vv)(n,N, p) characterizes denoising in
the k−to−v channel.

In what follows, we specify (12) and (13) for the time-
variant unbiased FIR estimator and compare its estimates
with the Kalman ones, considering a simple example.

3.1 EB for the Unbiased FIR Estimator
Observing (8), one infers that J becomes zero valued if all
of the generic gains (9) acquire zeroth components. Be-
cause noise prevents such an ideal situation, estimators are
commonly optimized in different sense such as the minimum
MSE, minimum variance, or minimum bias. Below, we de-
rive NPG for the unbiased FIR estimator withDn identity.

It follows from [19, Eq. (33)] that the unbiased gain for
time-invariant models is the product of a power of A and an
auxiliary matrix composed withA andC. If to substitute the
former with the multiplication of the time-variant matrices
An and C with Cn then the gain becomes suitable for time-
varying models; that is,

H̄=
n+p−m−1

∏
i=0

An+p−i(C
T
n,mCn,m)−1CT

n,m , (14)

where the MN×K matrix Cn,m is

Cn,m =













Cn
n−m−1

∏
i=0

An−i

Cn−1
n−m−1

∏
i=1

An−i

...
Cm+1Am+1

Cm













. (15)

Saving the kth row in each Ci, i ∈ [m,n], as C̃i allows us
to specify the generic gain via (14) as

H̄k =
n+p−m−1

∏
i=0

An+p−i(C̃
T
n,mC̃n,m)−1C̃T

n,m , (16)

in which C̃n,m is Cn,m thinned by C̃i. Then substituting (16)
to (9) gives us the generic NPG matrix
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K̄k =
n+p−m−1

∏
i=0

An+p−i(C̃
T
n,mC̃n,m)−1

(
n+p−m−1

∏
i=0

An+p−i

)T

. (17)

Further representing (17) as (12) determines the required
components. Because NPG must be provided in line with
the estimate, a computational problem may arise in the batch
form (17) when N is large. The following theorem states a
fast iterative algorithm for (17), which proof is postponed to
Appendix A,

Theorem 1 Given the generic NPG matrix (17), then its fast
computation can be provided iteratively by

K̄k(l,N, p) =Al+p[Θl + K̄
−1
k (l−1,N, p)]−1AT

l+p , (18)

where l ranges from K to n, an initial gain value K̄k(K −
1,N, p) is computed using (17), Θl is given by (A.10), and
the true gain corresponds to l = n.

Provided fast computation of NPG, by (18) (theorem 1),
the error bounds for main and interacting channels can easily
be computed employing (13).

4. EXAMPLE

To illustrate efficiency of the error bound (13) proposed, we
consider below a simple case of (1) and (2) with measure-
ment of the first state saving only the first term in (8). The
model is specialized with Bn = I, Cn = [1 0 ], Dn identity,
and

An =

[

1 (1+dn)τ
0 1

]

, (19)

where we let dn = 5 for 160 6 n 6 200 and dn = 0 otherwise.
The variances of the independent and uncorrelated zero mean
white noise sequences in the first state x1n and second state
x2n were allowed to be σ 2

x1 = 10−4 and σ 2
x2 = 4× 10−6/s2,

respectively. Measurement of the first state was organized
with noise having the variance σ 2

1 = 0.225.
The process was simulated at 400 points. The time-

invariant and time-varying unbiased FIR and Kalman filters
were applied in order to estimate the first state. In the time-
varying case, we used (19) and the time-invariant one was
organized by letting dn = 0 in (19) over all measurement.
Following [22], optimum averaging intervals were found to
be Nopt = 29 and Nopt = 14 beyond and within the variation
region, respectively.

Figure 1 illustrates typical errors in the time-invariant
(Fig. 1a) and time-varying (Fig. 1b) filtering. Here, EB
(dashed) was calculated by (13) with k = 1 and v = 1. As
can be seen, mismatch between the estimator and model in
the region of variations causes errors in the time-invariant es-
timates to exceed the bounds (Fig. 1a). In the time-varying
case (Fig. 1b), the estimate well range within an gap between
EB and −EB. One can notice that there is no substantial dif-
ference between the errors produced by the Kalman and un-
biased FIR estimates (Fig. 1), since the latter is near optimal.
This observation suggests that EB can be applied for Kalman
filtering as well.
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Figure 1: Typical estimate errors of the first state produced
by the two-state unbiased FIR and Kalman filters: (a) time-
invariant filtering and (b) time-varying filtering. EB and
−EB are dashed.

5. CONCLUSION

In this paper, we specified the NPG matrix for a p-shift dis-
crete time-variant state-space MIMO FIR estimator. A com-
putationally efficient iterative algorithm for the generic NPG
was provided along. Employing the concept of NPG, we also
specialized the error bound EB (13) in the three-sigma sense.

The Kk(kk) component is principle in the generic NPG
matrix (12). It characterizes denoising in the estimator
k−to−k channel. Other critical ones Kk(vv) placed on the
main diagonal of (12) characterize the k-to-v, v 6= k, chan-
nel. The remaining components Kk(vg), k 6= v 6= g, repre-
sent interactions in the estimator channels and can be in-
voked to complete the noise reduction picture, although it has
rather a theoretical meaning. A numerical example given for
k = v = g = 1 confirms that the estimate errors are efficiently
bounded with EB (13).

Overall, one may deduce that EB formed via NPG and
the measurement noise variance can serve as an efficient
measure of errors in optimal and suboptimal transversal es-
timators. They may also be used to bound the recursive
Kalman estimates. Therefore, deeper studies of EB should
certainly be a special topic for further investigation.

A. ITERATIVE COMPUTATION OF THE GENERIC
NPG MATRIX

Consider (17), substitute n with an iterative variable l and
rewrite K̄k(n,N, p) (17) as
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K̄k(l,N, p) =
l+p−m−1

∏
i=0

Al+p−i(C̃
T
l,mC̃l,m)−1

×

(
l+p−m−1

∏
i=0

Al+p−i

)T

, (A.1)

where l ranges from K to n, because the inverse in (A.1) does
not exist with l < K. Assign

P−1
l = C̃T

l,mC̃l,m , (A.2)

employ the matrix inversion lemma [23],

(B+D)−1 =B−1−B−1(I+DB−1)−1DB−1 , (A.3)

and represent Pl via (15) as follows:

Pl = Pl−1−Pl−1



I+

(
l−m−1

∏
i=0

Al−i

)T

C̃T
l C̃l

×
l−m−1

∏
i=0

Al−iPl−1

]−1(l−m−1

∏
i=0

Al−i

)T

×C̃T
l C̃l

l−m−1

∏
i=0

Al−iPl−1 . (A.4)

Introduce

Fl =
l−m−1

∏
i=0

Al−iPl

(
l−m−1

∏
i=0

Al−i

)T

,

Fl−1 =
l−m−1

∏
i=1

Al−iPl−1

(
l−m−1

∏
i=1

Al−i

)T

,

apply to (A.4), assign Ξl = AT
l C̃

T
l C̃lAl , follow [19], and

arrive at the recursive form of

Fl = AlFl−1A
T
l −AlFl−1(I+ΞlFl−1)

−1

×ΞlFl−1A
T
l . (A.5)

Next, refer to (A.2) and (A.5) and rewrite (A.1) as

K̄k(l,N, p) = ΓlAlFl−1A
T
l Γ

T
l −ΓlAlFl−1

×(I+ΞlFl−1)
−1ΞlFl−1A

T
l Γ

T
l ,(A.6)

where Γl , Γl(p) depends on p as

Γl =







(
|p|−1
∏
i=0
Al−i

)−1

, p < 0 (smoothing)

I , p = 0 (filtering)
p−1
∏
i=0
Al+p−i, p > 0 (prediction)

. (A.7)

The gain at l−1 can now be written as

K̄k(l−1,N, p) =A−1
l+pΓlAlFl−1A

T
l Γ

T
l A

−T
l+p (A.8)

that allows us to transform (A.6) to

K̄k(l,N, p) = Al+pK̄k(l−1,N, p)AT
l+p

−Al+pK̄k(l−1,N, p)

×[I+ΘlK̄k(l−1,N, p)]−1

ΘlK̄k(l−1,N, p)AT
l+p , (A.9)

whereΘl is given by

Θl =AT
l+pΓ

−T
l C̃T

l C̃lΓ
−1
l Al+p . (A.10)

Note that, for time-invariant models, (A.9) transforms to
[19, Eq. (58)]. By (A.3), the form (A.9) readily converts to
(18).
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