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ABSTRACT
In this paper1, we study the discrete power allocation game
for the fast fading multiple-input multiple-output multiple
access channel. Each player or transmitter chooses its own
transmit power policy from a certain finite set to optimize its
individual transmission rate. First, we prove the existence
of at least one pure strategy Nash equilibrium. Then, we in-
vestigate two learning algorithms that allow the players to
converge to either one of the NE states or to the set of corre-
lated equilibria. At last, we compare the performance of the
considered discrete game with the continuous game in [7].

1. INTRODUCTION

Game theory appears to be a suitable framework to analyze
self-optimizing wireless networks. The transmitters, based
on their knowledge on the environment and cognitive capa-
bilities, allocate their own resources to optimize their indi-
vidual performance with very little or no intervention from a
central authority.

Game theoretical tools have recently been used to study
the power allocation problem in networks with multiple an-
tenna terminals. In [1],[2],[3],[4],[5], the authors studies the
MIMO slow fading interference channel, in [6] the MIMO
cognitive radio channel, and in [7] the multiple access chan-
nel. The main drawback of these approaches is the fact that
the action sets (or possible choices) of the transmitters are the
convex cones of positive semi-definite matrices. In practice,
this is an unrealistic assumption and discrete finite action
sets should be considered. Another raising issue is related
to the iterative water-filling type algorithms that converge to
the games’ Nash equilibria (NE) states. In order to apply
these algorithms, the transmitters are assumed to be strictly
rational players that perfectly know the structure of the game
(at least their own payoff functions) and the strategies played
by the others in the past.

An alternative way of explaining how the players may
converge to an NE is the theory of learning [14]. Learn-
ing algorithms are long-run processes in which players, with
very little knowledge and rationality constraints, try to opti-
mize their benefits. In [8], the authors propose two stochas-
tic learning algorithms that converge to the pure strategy NE
and to mixed strategy NE of the energy efficiency game in
a single-input single-output (SISO) interference channel. In
[10], the multiple access point wireless network is investi-
gated where a large number of users can learn the correlated
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equilibrium of the game. A similar scenario is studied in
[12]. In [9], learning algorithms are proposed in a wireless
network where users compete dynamically for the available
spectrum. In [11], the authors study learning algorithms in
cellular networks where the links are modeled as collision
channels. An adaptive algorithm was proposed in [1] for the
MIMO interference channel. The proposed algorithm allows
the users to converge to a Stackelberg equilibrium by learn-
ing the ranks of their own covariance matrices that maximize
the system sum-rate.

In this paper, we study the power allocation game in fast
fading multiple-input multiple-output (MIMO) multiple ac-
cess channels (MAC), similarly to [7]. We assume that the
action sets of the transmitters are discrete finite sets and con-
sist in uniformly spreading their powers over a subset of an-
tennas. Assuming the single user decoding scheme at the
receiver, we show that the proposed game is a potential one
and the existence of a pure strategy Nash equilibrium (NE)
follows directly. However, the uniqueness of the NE cannot
be ensured in general and, thus, several iterative algorithms
that converge to one of the NE states are studied. A best-
response type algorithm is compared with a reinforcement
learning algorithm in terms of system performance, required
information, and cognitive capabilities of players. To im-
prove the system performance, we consider a second learn-
ing algorithm based on regret matching that converges to the
set of correlated equilibria (CE).

We begin our analysis by describing the system model in
Sec. 2 and introducing some basic game theoretical concepts.
Then, in Sec. 3, we analyze the Nash equilibria of the power
allocation game. First, we review the setting of [7] in Subsec.
3.1 and then, study the discrete game in Subsec. 3.2. In
Sec. 4, we study two learning algorithms: One that allows
the users to converge to one of the NE (see Subsec. 4.1) and
another that allows the users to converge to the set of CE (see
Subsec. 4.2). We analyze the performance of the different
scenarios via numerical simulations in Sec. 5 and conclude
with several remarks in Sec. 6.

2. SYSTEM MODEL

We consider a multiple access channel (MAC) composed of
an arbitrary number of mobile stations (MS) K ≥ 2 and a
single base station (BS). We further assume that each mobile
station is equipped with nt antennas whereas the base station
has nr antennas. We assume the fast fading model where the
receiver has perfect knowledge of the channel matrices. The
knowledge required at the transmitters depends on the differ-
ent scenarios and will be defined accordingly. The equivalent
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baseband signal received at the base station is:

Y =
K

∑
k=1

HkXk +Z, (1)

where the time index has been ignored and X k is the nt -
dimensional column vector of symbols transmitted by user
k, Hk ∈ Cnr×nt is the channel matrix (stationary and ergodic
process) of user k and Z is a nr-dimensional complex white
Gaussian noise distributed as N (0,σ 2Inr).

In order to take into account the antenna correlation ef-
fects at the transmitters and receiver, we will assume the
different channel matrices to be structured according to the
unitary-independent-unitary model introduced in [23], ∀k ∈
K , Hk =VkH̃kWk, where K = {1, ...,K}, Vk and Wk are
deterministic unitary matrices. Also H̃k is an nr ×nt matrix
whose entries are zero-mean independent complex Gaussian
random variables with an arbitrary profile of variances, such
that E|H̃k(i, j)|2 = σk(i, j)

nt
. Note that the Kronecker propa-

gation model ( where the channel matrices are of the form

Hk = R
1/2
k Θ̃kT

1/2
k ) is a special case of the UIU model. The

BS is assumed to use a simple single user decoding (SUD)
technique. The achievable ergodic rate of user k ∈ K is
given by:

uk(Qk,Q−k) = E[ik(Qk,Q−k)], (2)

where ik(Qk,Q−k) denotes the instantaneous mutual infor-
mation

ik(Qk,Q−k) = log2

∣
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(3)
In this paper, we study the power allocation game where the
players are autonomous non-cooperative devices that choose
their power allocation policies, Qk, to maximize their own
transmission rates, uk(Qk,Q−k).

2.1 Non-Cooperative Game Framework

In what follows, we briefly define some basic game theoreti-
cal concepts ( see e.g. [13] for details) and standard notations
that will be used throughout the paper. A normal-form game
is defined as the triplet G = (K ,{Ak}k∈K ,{uk}k∈K ) where
K is the set of players ( the K transmitters), Ak represents
the set of actions ( discrete or continuous) that player k can
take ( different power allocation policies), and uk : A → R+

is the payoff function of user k that depends on his own
choice but also the choices of the others ( the ergodic achiev-
able rate in (2)) where A = ×k∈K Ak represents the overall
action space. We denote by a ∈ A a strategy profile and by
a−k the strategies of all the players except k.

The Nash equilibrium has been introduced in [15] and
appears to be the natural solution in non-cooperative games.
The mathematical definition of a pure-strategy NE is given
by:

Definition 1 A strategy profile a∗ ∈A is a Nash equilibrium
for the game G = (K ,{Ak}k∈K ,{uk}k∈K ) if for all k ∈ K

and all ak ∈ Ak: uk(a∗k ,a
∗
−k) ≥ uk(ak,a∗−k).

This definition translates the fact that the NE is a stable state
from which no user has any incentive to deviate unilaterally.
A mixed strategy for user k is a probability distribution over
its own action set Ak. Let ∆(Ak) denote the set of probabil-
ity distributions over the set Ak. The mixed NE is defined
similarly to pure-strategy NE by replacing the pure strate-
gies with the mixed strategies. The existence of NE has been
proven in [15] for all discrete games. If the action spaces
are discrete finite sets, then p

k
∈ ∆(Ak) denotes the probabil-

ity vector such that pk, j represents the probability that user k

chooses a certain action a( j)
k ∈ Ak and ∑

a( j)
k ∈Ak

pk, j = 1.

We also define the concept of correlated equilibrium [16]
which can be viewed as the NE of a game where the players
receive some private signaling or playing recommendation
from a common referee or mediator. The mathematical defi-
nition is as follows:

Definition 2 A joint probability distribution q ∈ ∆(A ) is a

correlated equilibrium if for all k ∈ K and all a( j)
k ,a(i)

k ∈Ak

∑
a∈A :ak=a( j)

k

qa

[

uk(a
( j)
k ,a−k)−uk(a

(i)
k ,a−k)

]

≥ 0, (4)

where qa denotes the probability associated to the action pro-
file a ∈ A .

At the CE, User k has no incentive in deviating from the me-

diator’s recommandation to play a( j)
k ∈ Ak knowing that all

the other players follow as well the mediator’s recommenda-
tion (a−k). Notice that the set of mixed NE is included in the
set of CE by considering independent p.d.f’s. Similarly, the
set of pure strategy NE is included in the set of mixed strat-
egy NE by considering degenerate p.d.f.’s (i.e. pk, j ∈ {0,1})
over the action sets of users.

3. NON-COOPERATIVE POWER ALLOCATION
GAME

In this section, we analyse the NE of the power allocation
game in fast fading MIMO MAC. First, we briefly review
the case where the action sets of the users are continuous
[7]. Then, we focus our attention on the practical case where
the action sets of the users are discrete and finite. In this
section, the players are assumed to be strictly rational trans-
mit devices. Based on the available information, the trans-
mitters choose the power allocation policy maximizing their
own transmission rates. Furthermore, rationality is assumed
to be common knowledge.

3.1 Compact and Convex Action Sets

We consider the same scenario as [7]. The transmit-
ters are assumed to know only the statistics of the chan-
nels. The non-cooperative normal-form game is denoted by
GC = (K ,{Ck}k∈K ,{uk}k∈K ). Each mobile station k ∈ K

chooses its own input transmit covariance matrix Qk ∈ Ck
to maximize its own achievable ergodic rate defined in (2).
The action set of player k ∈K is the convex cone of positive
semi-definite matrices:
Ck =

{

Qk ∈ Cnt×nt |Qk � 0,Tr(Qk) ≤ Pk
}

. In [7], the au-
thors proved the existence and uniqueness of NE using The-
orems 1 and 2 in [17]. We provide here an alternative proof
based on the notion of potential games [18].
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Definition 3 A normal form game G =
(K ,{Ak}k∈K ,{uk}k∈K ) is a potential game if there
exists a potential function P : A → R+ such that, for all
k ∈ K and every a,b ∈ A

uk(ak,a−k)−uk(bk,a−k) = P(ak,a−k)−P(bk,a−k). (5)

Following [18], the local maxima of the potential function
are the NE of the game. Thus, every potential game has at
least one NE. For the game GC, the system achievable sum-
rate:

R(Q1, . . . ,QK) = E log2

∣

∣

∣

∣

∣

I+ρ
K

∑
k=1

HkQkH
H
k

∣

∣

∣

∣

∣

, (6)

is a potential function. It can be checked that R(Q) is strictly
concave w.r.t. (Q1, . . . ,QK). Thus, it has a unique global
maximizer which corresponds to the unique NE of the game.
Furthermore, based on the finite improvement path (FIP)
property [18], the iterative water-filling type algorithm in [7]
converges to the unique NE. In [19], the author proves that
for strict concave potential games, the CE is unique and con-
sists in playing with one probability the unique pure NE. So
the CE reduces to the unique NE of the game.

There are several drawbacks of this distributed power al-
location framework: i) The action sets of users are assumed
to be compact and convex sets ( unrealistic in practical sce-
narios); ii) In order to implement the iterative water-filling
algorithm, the transmitters need to know the global channel
distribution information and to observe, at every iteration,
the strategies chosen by the other players ( very demanding
in terms of information assumptions and signaling cost).

3.2 Finite Action Sets

Let us now consider the scenario where the action sets of
users are discrete finite sets. The discrete game is very simi-
lar to GC and is denoted by GD = (K ,{Dk}k∈K ,{uk}k∈K ).
The action set of user k is a simple quantized version of Ck:

Dk =

{

Pk

`
Diag(e`)

∣

∣

∣

∣

∣

` ∈ {1, . . . ,nt},e` ∈ {0,1}nt ,
nt

∑
i=1

e`(i) = `

}

.

(7)
Dk represents the set of diagonal matrices that consists in
allocating uniform power over only a subset of ` eigenmodes.
Note that the discrete game GD remains a potential game with
the same potential function in (6). Thus, the existence of at
least one pure NE is guaranteed. However, the uniqueness
property of the NE is lost in general.

We consider hereunder two particular scenarios that il-
lustrate the extreme cases where either all strategy profiles in
D = ×kDk are NE or where the NE is unique.

3.2.1 Completely Correlated Antennas

Let us assume the Kronecker model where the transmit an-
tennas and receive antennas are completely correlated, i.e.,
for all k, Rk = Jnr and Tk = Jnt . The matrix Jn is a n× n
matrix with all entries equal to one. In this case, the potential
function is constant and independent of the users’ covariance
matrices:

R(Q1, . . . ,QK) = E log2

∣

∣

∣

∣

∣

Inr +ρP
K
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nr

∑
i=1

nt

∑
j=1

|hk(i, j)|2Jnr

∣

∣

∣

∣

∣

.

(8)

This means that all the possible action profiles in
(Q1, . . . ,QK) ∈ D are potential maximizers and thus NE of
GD.

3.2.2 Independent Antennas

Now, we consider the other extreme case where the anten-
nas at the terminals are completely uncorrelated, i.e., for
all k, Rk = Inr and Tk = Int . In other words, Hk is a
random matrix with i.i.d. complex Gaussian entries. Let
us recall that in the continuous setting derived in Subsec.
3.1, if Hk are i.i.d. matrices, then the NE policy for all
users is spread their powers uniformly over all the anten-

nas: ∀k,Q(UPA)
k = Pk

nt
Int . In the continuous case, the poten-

tial function is strictly concave. Thus, for that any user k the

strategy Q
(UPA)
k strictly dominates all the other strategies in

Ck. From the fact that Dk ⊂ Ck, the strategy Q
(UPA)
k strictly

dominates all the other strategies in Dk also. In conclusion,
the NE is unique and corresponds to the same solution as
in the continuous game. Note that this is a very particular
case and occurs only because the NE profile in the continu-

ous case, (Q
(UPA)
1 , . . . ,Q

(UPA)
K ) ∈ C = ×kCk happens to be

also in the discrete set D .
We see that, when quantizing the action sets of players,

the uniqueness of the NE is no longer guaranteed. This raises
an important issue when playing the one-shot game. There
is a priori no explanation for users to expect the same equi-
librium point. Because of this, their actions may not even
correspond to an NE at all. A possible way to cope with this
problem is to consider distributed iterative algorithms that
converge to one of the NE points. Let us consider the iterative
algorithm based on the best-response functions (similarly to
[7]). Knowing that GD is a potential game, by the FIP prop-
erty, the users converge to one of the possible NE depend-
ing on the starting point. At each iteration, only one of the
players updates his action by choosing its best action w.r.t.
its own payoff. For exemple, at iteration t user k chooses

Q[t]
k = arg max

Qk∈Dk

uk

(

Qk,Q
[t−1]
−k

)

, while the other users don’t

do anything and Q
[t]
−k =Q

[t−1]
−k . Notice that user k is supposed

to know the previous actions of the other players Q
[t−1]
k . This

involves a high amount of signaling between players. At the
end of each iteration, the user that updated its choice needs
to send it to all the other users. Furthermore, the users are
assumed to be strictly rational and need to know the struc-
ture of the game and their own payoff in order to compute
the best-response functions.

4. LEARNING ALGORITHMS

In this section, we discuss a different class of iterative al-
gorithms that converge to the equilibrium points of the dis-
crete game GD described in Subsec. 3.2. As opposed to the
best-response algorithm, the users are no longer rational de-
vices but simple automata that know only their own action
sets. They start at a completely naive state choosing ran-
domly their action (following the uniform distribution over
their own action sets for exemple). After the play, each users
obtains a certain feedback from the nature (e.g., the real-
ization of a random variable, the value of its own payoff).
Based only on this value, each user applies a simple updating
rule of its mixed strategy. It turns out that, in the long-run,
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the updating rules converge to some desirable system states
(NE, CE). Note that the rationality assumption is no longer
needed. The transmitters don’t even need to know the struc-
ture of the game or even that a game is played at all. The
price to pay will be reflected in slower convergence time.

4.1 A Reinforcement Learning Algorithm

We consider a stochastic learning algorithm similar to [20].

Let us index the elements of DK = {D
(1)
k , . . . ,D

(mk)
k } with

mk = Card(Dk) (i.e., the cardinal of Dk). At step t > 0 of the
iterative process, User k randomly chooses a certain action

Q
[t]
k ∈Dk based on the probability distribution p[t−1]

k from the
previous iteration. As a consequence, it obtains the realiza-
tion of a random variable, which is, in our case, the normal-

ized instantaneous mutual information i[t]k =
ĩk

(

Q
[t]
k ,Q

[t]
−k

)

Imax
∈

[0,1]. Where ĩk(·, ·) is a finite approximation of the mutual
information ik(·, ·) such that:

ĩk(·, ·) =

{

ik(·, ·) , if ik(·, ·) ≤ Imax
Imax , otherwise , (9)

where Imax is chosen such that the expectation of ĩk(·, ·) ap-
proximates the expected mutual information and thus de-
pends on the system’s parameters (nr,nt ,ρ). Based on this
value, User k updates its own probability distribution as fol-
lows:

p[t]
k, j =

{

p[t−1]
k, j −bi[t]k p[t−1]

k, j , if Q
[t]
k 6= D

( j)
k ,

p[t−1]
k, j +bi[t]k (1− p[t−1]

k, j ), if Q
[t]
k = D

( j)
k ,

(10)

where 0 < b < 1 is a step size and p[t]
k, j represents the proba-

bility that user k choses D
( j)
k at iteration t. Using well known

results in weak convergence of random processes [20], the
sequence will converge, when b → 0 to the solution of a de-
terministic ordinary differential equation (ODE). Similarly
to [21], it can be checked that the potential function in (6) is
a Lyapunov function for this ODE. This means that the sta-
tionary stable points of the ODE correspond to the maxima
of the potential and, thus, to the pure strategy NE of GD. In
conclusion, when t →+∞, the updating rule (10) converge to
one of the pure strategy NE. This means that the users learn
their own NE strategies knowing only the realization of their
mutual information and using a simple updating rule.

4.2 Learning Correlated Equilibria

In general, the performance at the NE for discrete games de-
pends on the quantized choice of the action sets of users. In
order to improve the users’ performance, we study a different
learning algorithm which allows them to converge towards a
correlated equilibrium.

We consider the modified regret matching algorithm in-
troduced in [22] which allows the players to converge to the
set of correlated equilibria. Each user needs only the knowl-
edge of its own payoff values received over the time.

At iteration t, User k choses randomly an action Q
[t]
k fol-

lowing the distribution p[t−1]
k and obtains the value of its pay-

off u[t]
k = uk(Q

[t]
k ,Q

[t]
−k). Without loss of generality, assume

Q
[t−1]
k = D

( j)
k . The play probabilities are updated as follows:











p[t]
k,i =

(

1− δ
tγ

)

min
{

1
µ M[t−1]

k ( j, i), 1
mk−1

}

+ δ
tγ

1
mk

, for i 6= j,

p[t]
k, j = 1− ∑

i6= j

p[t]
k,i,

(11)
where 0 < δ < 1, 0 < γ < 1/4, µ > 0 a sufficiently large
parameter that ensures the probabilities are well defined. We

observe that User k needs to know not only u[t]
k but also all

the past values of its payoff
{

u[τ]
k

}

τ<t
. The basic idea is that

if at time t a player plays action D
( j)
k then the probability

that at time t +1 the player chooses a different action D
(i)
k is

proportional to the regret for not having chosen action D
(i)
k

instead of D
( j)
k . The regret is measured as an approximation

of the increase in average payoff ( if any) resulting if User k

had chosen action D
(i)
k in all the past when D

( j)
k was chosen

and is denoted by M[t]
k ( j, i):

M[t]
k ( j, i) =





1
t ∑

τ≤t,Q[τ]
k =D

(i)
k

p[τ ]
k, j

p[τ ]
k,i

u[τ ]
k −

1
t ∑

τ≤t,Q[τ]
k =D

( j)
k

u[τ ]
k





+

.

(12)
It turns out (see [22]) that the empirical distribution of

play up to t denoted by zt ∈ ∆(D)

zt(Q1, . . . ,QK) =
1
t

Card{τ ≤ t : (Q[τ ]
1 , . . . ,Q

[τ ]
K )= (Q1, . . . ,QK)},

(13)
for all (Q1, . . . ,QK) ∈D converges almost surely as t →+∞
to the set of correlated equilibria.

There are several differences with the learning algorithm
we discussed in Subsec. 4.1. Here, the learning process is
no longer stochastic and the feedback each user gets at iter-

ation t is the value of the deterministic payoff u[t]
k = uk(·, ·)

instead of ik(·, ·). The consequence is that the convergence
is faster but the nature has to feedback not only the instan-
taneous mutual information but the ergodic achievable rate.
Also, the updating rule for User k at iteration t depends on

the whole history of received payoff values
{

u[τ]
k

}

τ≤t
and

not only on the current iteration u[t]
k .

5. SIMULATION RESULTS

In what follows, we evaluate the gap between the results ob-
tained at the equilibrium point of GC in Subsec. 3.1 and
GD in Subsec. 3.2. We also analyze the performance of
the two learning algorithms. We consider the following sce-
nario: Two users (K = 2), nr = nt = 2, the Kronecker chan-
nel model where the transmit and receive correlation follow
the exponential profile (i.e. Rk(i, j) = r|i− j|

k and Tk = t |i− j|
k )

characterized by the coefficients r1 = 0.7, r2 = 0.5, t1 = 0.2,
t2 = 0.4, and σ 2 = 1 W.

First, we consider the discrete game in Subsec. 3.2. In
Fig. 1, we plot the expected payoff depending on the prob-
ability distribution over the action sets at every iteration for
User 1 in Fig. 1(a) and for User 2 in Fig. 1(b) assuming
P1 = P2 = 5 W. We assume here that the stochastic reinforce-
ment algorithm in Subsec. 4.1 is applied by both users in
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(a) User 1.
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(b) User 2.

Figure 1: Expected payoff vs. iteration number for K = 2 users.
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Figure 2: The achievable sum-rate at the NE. Compact action sets game vs. discrete
action sets game. There is an optimality loss due to the quantization of the users’ action
sets.

order to learn their NE strategies. We observe that the users
converge after approximatively 8 ·104 iterations. By using a
based response algorithm the convergence is almost instan-
taneous ( only 2 or 3 iterations). However, the rationality
assumption and perfect knowledge of the game structure for
each player are required.

At last, we compare the performance of the overall sys-
tem in terms of achievable sum-rate of the two games dis-
cussed in Sec. 3 as function of P ∈ {0, . . . ,10} W, assuming
P1 = P2 = P. In Fig. 2, we plot the achievable sum-rate
obtained at the NE with the iterative water-filling type algo-
rithm proposed in [7] for GC. Also, we plot the achievable
sum-rate obtained at the NE point of GD to which the users
applying the learning algorithm in Subsec. 4.1 converge. We
observe that there is a performance loss due to the quantiza-
tion of the action sets of users. The discrete action sets Dk
can be further refined and the results of the algorithms im-
proved. However this will result in a higher complexity and
computational costs.

6. CONCLUSIONS

We study the discrete non-cooperative power allocation game
in MIMO MAC systems. In the long-run, the transmitters can
learn their optimal subset of active antennas. The players are
not assumed to be rational but automata which apply simple
updating rules on the p.d.f.’s over their possible power alloca-
tion policies. We evaluate the performance gap between the
convergence NE state of the learning procedure and the NE
of the analogous game with rational players and assuming
compact and convex action sets.
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