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ABSTRACT

This paper presents an entirely time domain approach for com-
municating over frequency selective multiple-input multiple-output
(MIMO) channels. The proposed system applies a paraunitaryma-
trix to the received signals, which is specifically designedto trans-
form the effective polynomial channel matrix for the systeminto an
upper triangular polynomial matrix. This then enables the MIMO
channel equalisation problem to be transformed into a set ofsingle-
input single-output (SISO) equalisation problems, by exploiting the
upper triangular structure of the transformed channel matrix, which
can then be individually solved using Turbo equalisation. In partic-
ular, this paper investigates how the system performs when there is
error present in the channel matrix state information and discusses
the possible errors that are encountered when formulating the QR
decomposition (QRD) of a polynomial matrix.

Index Terms— Convolutive mixing, paraunitary matrix, poly-
nomial matrix QR decomposition, MIMO channel equalisation

1. INTRODUCTION

Polynomial matrices arise, in the context of this paper, when a set
of signals arrive at an array of sensors via multiple paths resulting in
the received signals consisting of a sum of weighted and delayed ver-
sions of the transmitted signals. The mixing process in thissituation
can be characterised by a polynomial matrix where the indeterminate
variable of each polynomial element of the matrix isz−1, as this is
often used to represent a unit delay. Ap×q polynomial matrix of
this form can be expressed as

A(z)=
t2

∑
τ=t1

A(τ)z−τ=




a11(z) a12(z) · · · a1q(z)

a21(z)
. . .

...
...

. . .
...

ap1(z) · · · · · · apq(z)




(1)

whereτ ∈ Z, A(τ) ∈ Cp×q is the matrix of coefficients ofz−τ and
t1 ≤ t2, where the values of the parameterst1 andt2 are not necessar-
ily positive. The( j ,k)th element of this matrix can then be expressed
as

a jk(z) =
t2

∑
τ=t1

a jk(τ)z−τ . (2)

In terms of a communication channel, this will represent thechan-
nel from thekth transmitter to thej th sensor. The quantity(t2− t1)
represents the temporal length of the channel over this path. For a
polynomial matrix, as expressed in equation (1), this quantity is re-
ferred to as the order of the matrix. Throughout this paper a polyno-
mial matrix, vector or scalar will use the qualifier(z) to denote it is a

polynomial in the indeterminate variablez−1. Furthermore, to avoid
confusion with the notation used for the z-transform of a variable,
polynomial quantities will use the additional underline notation, as
demonstrated in equations (1) and (2).

Algorithms have been developed for calculating several differ-
ent decompositions of a polynomial matrix [1, 2], in particular, the
authors have previously proposed an algorithm for calculating the
QR decomposition of a polynomial matrix (PQRD) in [3, 4]. This
algorithm has been applied to the problem of MIMO channel equali-
sation in [5,6], where the decomposition has been used to transform
this problem into a set of single channel equalisation problems us-
ing a process of back substitution, which are each solved in turn
using a iterative process of SISO channel equalisation and decoding.
However, these papers assume that the receiver has perfect knowl-
edge of the system channel matrix, which is clearly not a realistic
assumption. This paper extends this work to demonstrate howthe
method performs when error is observed in the channel matrixstate
information and confirms the performance of the system for various
levels of this error in terms of average bit error rate (BER).Note that
the conventional approach to communicating over this type of chan-
nel is to use orthogonal frequency division multiplexing (OFDM),
which firstly transforms the signals into the frequency domain, thus
allowing the system to be transformed into a set of frequencyflat
problems. The approach outlined in this paper, however, offers an
entirely time domain approach for communicating over MIMO fre-
quency selective channels.

1.1. Notation and Definitions

Throughout this paper, matrices are denoted as bold upper case char-
acters, vectors by bold lower case characters and scalars byregu-
lar lower case characters.I p defines ap× p identity matrix. Let
C

p×q define the set of polynomial matrices withp rows andq
columns, where the series of coefficients of each of the polynomial
elements are complex scalars. The Frobenius norm (F-norm) of a

polynomial matrix is the quantity‖A(z)‖F =

√√√√
t2

∑
τ=t1

p

∑
i=1

q

∑
j=1

∣∣ai j (τ)
∣∣2.

The paraconjugate of the polynomial matrixA(z) is defined to be
Ã(z) = AT

∗ (1/z) where(·)T denotes matrix transposition and(·)∗
the complex conjugation of each of the coefficients of the polyno-
mial matrix. The tilde notation(̃·) will be used throughout this paper
to denote paraconjugation.

2. THE QR DECOMPOSITION OF A POLYNOMIAL
MATRIX

The PQRD by columns (PQRD-BC) algorithm is a technique for
factorising a polynomial matrix into an upper triangular and a parau-
nitary polynomial matrix [3,4]. LetA(z) ∈ C

p×q, then the objective
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of the algorithm is to calculate a matrixQ(z) ∈ C
p×p such that

Q(z)A(z) = R(z) (3)

whereR(z)∈C
p×q is an approximately upper triangular polynomial

matrix. The polynomial matrixQ(z) must also be paraunitary, which
means it will satisfy the following condition

Q(z)Q̃(z) = Q̃(z)Q(z) = I p. (4)

This matrix represents a multichannel all-pass filter and therefore,
if applied to a set of signals, will preserve the total signalpower at
every frequency. This matrix is calculated as a series of polynomial
Givens rotations [3], which are applied to the matrixA(z) to drive
all polynomial elements beneath the diagonal of each columnof the
matrix approximately to zero in turn. The details of the algorithm
will not be discussed here, but is outlined in detail, together with
example decompositions, in [3].

2.1. Potential Errors in the Decomposition

There are three possible errors that can arise when using thepoly-
nomial matrix QR decomposition technique within a practical com-
munication system. Firstly, the proposed system requires that the
channel matrix must be estimated and so the channel matrix tobe
decomposed can therefore be expressed as

A(z) = AT(z)+E(z), (5)

whereAT(z) is the true channel matrix andE(z) is the matrix ac-
counting for the errors present in the estimated channel matrix. Sup-
pose the PQRD of this matrix is calculated according to equation
(3), then the relative error of the observed decomposition can then
be calculated as

Erel =
∥∥∥AT(z)− Q̃(z)R(z)

∥∥∥
F

/‖A(z)‖F . (6)

This measure can be used to determine the level of accuracy inthe
performed decomposition. Assuming that the only source of error in
the decomposition is from the estimation process, then the relative
error for the decomposition simplifies toErel = ‖E(z)‖F /‖A(z)‖F .

Furthermore, as each element ofA(z) is an FIR filter, it is gener-
ally not possible to obtain an exactly upper triangular matrix. For this
reason the algorithm stops once all coefficients of the elements be-
neath the diagonal ofR(z) are less than a specified valueε in magni-
tude. The relative error of the decomposition can then be calculated
as

Erel =
∥∥∥AT(z)− Q̃(z)R′(z)

∥∥∥
F

/‖A(z)‖F , (7)

where the matrixR′(z) is the approximately upper triangular ma-
trix obtained from the decomposition with all elements beneath the
diagonal of the matrix set equal to zero.

Finally, the third error arises due to truncating the ordersof the
polynomial matrices within the algorithm. With every application of
a polynomial Givens rotation within the decomposition process, the
orders of the polynomial matrices will increase. This will typically
result in the final matricesR(z) andQ(z) of equation (3) both being
of very large orders. In [3] it is shown that a truncation method can
be applied to ensure that an accurate decomposition is stillachieved,
whilst also ensuring that the orders of the final polynomial matrices
are as small as possible. This method will not be discussed here,
but a detailed description can be found in [3] and referencestherein.
This process is also advantageous for the equalisation performed at
the receiver, where the computational complexity is proportional to
the order of the matrixR(z). It has previously been shown in [3]
that a good approximation is achievable when using the PQRD-BC
algorithm.

3. SYSTEM MODEL FOR SPATIAL-TEMPORAL MODE
TRANSMISSION WITH THE PQRD

Assume thatx(τ) ∈ Cq×1, whereτ = 0, . . . ,N1− 1, denote the set
of signals that are to be transmitted, to be received at an array of p
sensors. Thekth element of this vector,xk(τ), is the signal trans-
mitted at timeτ from thekth antenna. The environment between the
transmitters and receivers can be expressed by the polynomial chan-
nel matrixA(z) ∈ C

p×q, where it is assumed thatp≥ q, i.e., there
are at least as many receivers as transmitters. The receivedsignals
from this system can therefore be expressed as

y(t) =
L−1

∑
k=0

A(k)x(t −k)+n(t) (8)

wheret = 0, . . . ,N1 +L−1, the order of the channel matrixA(z) is
L andn(t) ∈ Cp×1 denotes an additive zero-mean circular complex
Gaussian noise process. This could alternatively be expressed, using
the polynomial vector or matrix notation, as

y(z) = A(z)x(z)+n(z) (9)

where

y(z) =
N1+L−1

∑
t=0

y(t)z−t ∈ C
p×1, (10)

x(z) =
N1+L−1

∑
t=0

x(t)z−t ∈ C
q×1 (11)

and

n(z) =
N1+L−1

∑
t=0

n(t)z−t ∈ C
p×1 (12)

denote respectively algebraic power series of the received, transmit-
ted and noise terms.

The PQRD of the matrixA(z) can then be calculated according
to equation (3) to obtain an approximately upper triangularpoly-
nomial matrixR(z) ∈ C

p×q and a paraunitary polynomial matrix
Q(z)∈C

p×p. For this application, all elements beneath the diagonal
of R(z), which are approximately equal to zero, are now set equal to
zero. The received signals are then filtered by the polynomial matrix
Q(z) to obtain

y′(z) = Q(z)y(z) ∈ C
p×1. (13)

Then the equivalent system, from transmitter to receiver, can be ex-
pressed as

y′(z) = R(z)x(z)+n′(z) (14)

wheren′(z) = Q(z)n(z) ∈ C
p×1, which remains an additive zero-

mean circular complex Gaussian noise process with identical spec-
tral properties due to the paraunitary nature ofQ(z). In particular,
theqth element ofy′(z) can now be expressed, due to the position of
the zero elements inR(z), as

y′
q
(z) = rqq(z)xq(z)+nq

′(z), (15)

which is a single channel equalisation problem. This can then be
solved using a standard method for SISO channel equalisation to
obtain an estimate of the signal transmitted from theqth transmit
antenna, i.e.,xq(z). Note that in this equivalent system the polyno-

mial elementrqq(z) is the spatial-temporal mode over which theqth

substream of data is transmitted.
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Fig. 1: Transmitter design for the H-BLAST PQRD system.

Now, the expression for the(q− 1)th element ofy′(z) can be

rewritten, using the estimate of theqth transmitted signal, referred to
asx̂q(z), as

y′
q−1

(z)− r (q−1)q(z)x̂q(z) = r(q−1)(q−1)(z)xq−1(z)+n′q−1(z), (16)

where all terms on the left-hand side of this expression are known
and so this expression is again a single channel equalisation prob-
lem. A SISO equalisation method can again be applied to obtain an
estimate of the signalxq−1(z). This process is now repeated working

upwards through the elements ofy′(z). In particular, theith element
of this vector can be expressed as

y
i
′(z)−

q

∑
j=i+1

r i j (z)x j(z) = r ii (z)xi(z)+n
′

i(z), (17)

which, provided the set of signals is estimated according tothe order-
ing i = q,q−1, . . . ,1, will be a SISO channel equalisation problem.
Each equation can then be solved to obtain an estimate of theith

transmitted signal ˆxi(z) using the previously estimated signals ˆx j(z)
for j = i + 1, . . . ,q. As with OFDM systems, preprocessing tech-
niques such as encoding and interleaving can be applied to improve
the performance of the system.

4. TRANSMITTER AND RECEIVER DESIGN FOR THE
SPATIAL-TEMPORAL MODE CHANNEL

To enable a fair comparison with previous work in the area, wehave
adopted the same PQRD system as implemented in [5], i.e. using
a Bell Laboratories Layered Space Time encoding architecture at
the transmitter and Turbo equalisation at the receiver. Theoverall
polynomial matrix decomposition system that has been used for the
simulations in Section 5 is now described.

4.1. Transmitter Design

When communicating over a MIMO system, it is advantageous to
use all available antennas as this will enable the system to achieve
full diversity order [7]. Horizontal Bell Laboratories Layered Space

Time (H-BLAST)1 architecture is a method for doing this [8],
which operates by demultiplexing the data stream intoq indepen-
dent streams that can then be individually encoded, interleaved and
symbol mapped in parallel prior to transmission from each oftheq
antennas. At the receiver each of thep streams are individually re-
covered before multiplexing to obtain an estimate of the initial data
stream. This system design avoids the impractical high complex-
ity observed with serial encoding [9], where the initial single data
stream will be encoded and then interleaved prior to demultiplexing
into a set ofq substreams.

Assume that the data stream to be transmitted iss =
[s(0), . . . ,s(N2−1)]T . This data stream is firstly demultiplexed into
q independent substreams, where thekth substream is

sk = [s((k−1)N2/q), . . . ,s(kN2/q−1)]T . (18)

Each stream is then independently convolutionally encodedusing
the following code formatting polynomials

G0 = 1+D3+D4 and G1 = 1+D1+D3+D4, (19)

which are taken from the standards for the global system for mo-
bile (GSM) communications [10]. Note that code rate is 1/2 and
so each encoded data stream will be of length 2(N2/q). The en-
coded signal is then interleaved to randomise the encoded bits prior
to transmission. This ensures that any errors appear randomand,
as a result, avoids long error bursts in estimates of the transmitted
data. For the results presented in Section 5, an S-random interleaver
with a depth of 28 bits has been applied [5]. Thekth independent
substream is then symbol mapped to a constellation point to obtain
the sequencexk and then transmitted from thekth transmit antenna.
Note that the transmitted signal in equation (8) at timeτ, where
τ = 0, . . . ,2(N2/q−1), now relates to the independent substreams
as follows

x(τ) = [x1(τ),x2(τ), . . . ,xq(τ)]T (20)

wherexk(τ) is theτ th element of the vectorxk. A block diagram of
the transmitter design, using the H-BLAST encoding structure, can

1Other BLAST architectures can be used within this scheme, H-BLAST
is demonstrated throughout this paper as an example.
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be seen in Figure 1, where it is assumed thatp = q = 3 as these are
the dimensions of our channel model in Section 5.

4.2. Receiver Design

Assume the signal received at thekth antenna at timeτ is yk(τ). Then
the set of received signals at timeτ can be expressed in vector form
as

y(τ) = [y1(τ), . . . ,yp(τ)]T . (21)

Assuming the channel matrix to the system is known at the receiver
and does not vary in time with each data block, the PQRD of thisma-
trix can be calculated according to equation (3). The received signals
are firstly filtered by the paraunitary matrix to obtainy′(τ) ∈ Cp×1.
The qth element of this vector can then be expressed as the single
channel equalisation problem in equation (15) and can now besolved
to obtain an estimate of theqth transmitted signal, i.e.,xq, using a
standard method for SISO channel equalisation. For the results pre-
sented in this paper, an iterative process of equalisation and decod-
ing has been implemented, which exchanges extrinsic information
between the two components to improve the overall bit error rate
performance. The iterative process is known as Turbo equalisation
and is now explained.

At each iteration of this process the following three step routine
is implemented,
1. Firstly, the equalisation of the SISO polynomial problemis per-

formed using a minimum mean squared error (MMSE) equaliser

to obtain a soft output estimate ofxq, this is referred to aŝxs
q. The

series of coefficients ofrqq(z) that are used within the equalisa-
tion process are also truncated to ensure that the process isnot
unnecessarily computationally slow to implement. A detailed
description of this equalisation function, including the truncation
process, can be found in [5,6].

2. The soft estimate ofxq is then deinterleaved.
3. A maximum a posteriori (MAP) decoder is then used to obtain

an estimate ofsq from the deinterleaved̂xs
q. For each transmitted

symbol, the MAP decoder generates a hard estimate ofsq and
also a soft estimate in the form of thea posteriori probability
of the received sequence, referred to asp, which is then inter-
leaved and used within the MMSE equaliser in the subsequent
iteration. This exchange of information between the different
stages of the joint equalisation and decoding process will enable
improved performance of the system.

This routine is now repeated incorporating the soft feedback from
the MAP decoder into the MMSE equaliser as this will generally
demonstrate significant improvements in the BER. For a detailed de-
scription of this technique see [5, 6, 11] and references therein. For
the results presented in this paper three iterations of the joint equal-
isation and decoding process are required. Further iterations offered
no further improvement in terms of average BER performance.A
block diagram of the joint Turbo equalisation scheme can be seen in
Figure 2. Once an estimate ofsq has been obtained, this can be used
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to obtain an estimate ofsq−1 using back substitution as described in
Section 3. This process is repeated until all substreams of transmit-
ted data have been recovered. The overall receiver design isdetailed
in Figure 3, where it has again been assumed thatp = q = 3.

5. SIMULATION RESULTS

The PQRD algorithm was applied as part of a broadband MIMO
communication system as described in Sections 3 and 4, whereav-
erage BER results will be used to assess the performance of the sys-
tem over a range of signal-to-noise ratios (SNR). The polynomial
channel matrix for the systemA(z) ∈ C

3×3 is chosen to be of order
four, where the series of coefficients of each of the polynomial ele-
ments are drawn from a circular complex Gaussian distribution with
mean zero and variance 1/5. The BER results, averaged over 1000
Monte-Carlo simulations, found when using this PQRD systemare
presented in Figure 4. Within the PQRD-BC algorithm, the poly-
nomial matrices are continually truncated to ensure that their orders
are not unnecessarily large and the algorithm computationally slow
to implement. The truncation is performed based on proportion of
the F-norm of the matrix permitted to be lost, this parameter, referred
to asµ was set equal to 10−6 for these results. Furthermore, the al-
gorithm was set to run until all coefficients of elements beneath the
diagonal of the matrixR(z) are less than 10−2. Note that this stop-
ping parameter is referred to asε.

This process was now repeated, allowing for estimation error on
the channel matrix according to equation (5), whereE(z) ∈ C

3×3

is a matrix of complex Gaussian noise with mean zero and variance
σ2. The average BER simulations were then repeated with varying
levels for channel estimation. The observed average BER simula-
tions found whenσ2 = 0.005 andσ2 = 0.01 can be seen in Figure
4. Clearly the more inaccurate the channel, then the worse the per-
formance of the system.

Note that other errors are present in the system, other than the
channel estimation error as explained in Section 2.1. Theseerrors
arise from only calculating an approximate QR decomposition of
the polynomial channel matrix, but can be kept small by choosing
suitable values for the stopping criterionε and truncation parameter
µ when formulating the decomposition. The relative error wasthen
calculated to check the overall accuracy of the decomposition in the
presence of all errors. This measure was on average found to equal
0.0177 whenσ2 = 0, 0.2054 whenσ2 = 0.005 and 0.2257 when
σ2 = 0.01. Further analysis on the effects of the different errors upon
the BER performance of the system is on going. In particular,to
determine the relationship between the three distinct errors discussed
and the error performance of the systems.
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Fig. 4: Average BER performance observed when using the
PQRD system with varying levels of channel state informa-
tion.

6. CONCLUSIONS

This paper has demonstrated how a polynomial matrix QRD algo-
rithm can be used as part of a broadband MIMO communications
system. This paper has also discussed the possible errors that are
encountered when formulating the QR decomposition of a polyno-
mial matrix. In particular, average BER simulations have been used
to illustrate the effect of various levels of channel state information
upon the performance of the system. Future work aims to compare
this method with other approaches of communicating over broad-
band MIMO channels, in particular to compare this method with a
MIMO orthogonal frequency division multiplexing QRD approach,
also when there is error present in the estimate of the channel matrix.
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