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ABSTRACT These results can be applied to video coding in order to

Distributed video coding (DVC) does not demand motionSimplify the encoder structure. In Distributed Video Caglin
estimation (ME) and compensation (MC) at the encoder, bfPVC) the video sequence is divided in Group of Pictures
only at the decoder and so it is more suitable for application(GOP). Each GOP consists of one Key Frame (KF) (usually
that require a simple encoder, like wireless sensor netvorkthe first one), that is intra-coded (i.e. it is coded indepen-
In DVC the video sequence is split into Key Frames (KFs)dently of the other frames) and Wyner-Ziv Frames (WZFs)
and Wyner-Ziv Frames (WZFs): the first are intra-coded andhat are coded by a systematic channel code. We send to the
the latter are coded by a channel code and only the pari coder only the redundance bits (i.e. the parity bits) nifve
bits are sent to the decoder. The KFs are available at the d&l€ KFs and the WZFs are correlated sources, we do not ex-
coder, while we need to estimate the WZF and correct thigl0it this dependence at the encoder, but only at the decoder
estimation with parity bits. One critical step is the estiioa /e produce an estimation of WZF by interpolating the ad-
of the WZF. The method of the state of the art, with whichjacent decoded KFs. This step is called Image Interpolation
we compare, is given by DISCOVER. It estimates the wzpand the WZF estimation is _caIIed S_lde Information (Sl). The
by linear interpolating the two adjacent KFs. We propose @! ¢an be considered a noisy version of the WZF. Then, we
higher order motion interpolation for WZF estimation by us-COect the errors of the WZF estimation with the parity bits
ing four KFs. Due to the high computational efforts, we pro-Sent by the channel encoder. The weak point of this scheme
pose also a fast algorithm that halves the complexity of théS a feedback channel is needed to adjust the number of parity
previous method. We note that the results of the fast methogits made by the encoder. . _
are comparable with the original one. An other proposal is On the other hand, the advantage of this structure is that

to increase the density of the motion vector field in order toV€ move the complexity in terms of computation (the motion
improve the estimation of the WZF. estimation) and in terms of memory (the exigence to storage

Keywords: Distributed video coding, image interpo- the previous frames) from the encoder to the decoder. This
lation is desirable if we need a low-complexity encoder, as in wire-
less sensor network, but it is not well suited for broadcast
transmission.
1. INTRODUCTION The reference technique for WZF estimation is given by
Let X andY be two correlated sources. If we encode themDISCOVER, that performs a linear interpolation between the
jointly, we can decode them without loss of information if two more adjacent KFs. In [4] we propose a higher order
Rx +Ry >H(X,Y),! butif we encode separatefyandY, we  motion interpolation (HOMI) method by using four KFs, in-
expect that we can decode them without loss of informatiorstead of two such as in DISCOVER. In this paper we improve
if Rx > H(X) andRy > H(Y), according to the first Shan- those results by increasing the density of the motion vector
non theorem. Indeed, according to the Slepian-Wolf Theofield (MVF) for the motion estimation, and we propose also a
rem [5], a total ratd&rx + Ry > H(X,Y) is sufficient, even for new method (Fast HOMI) in order to reduce the complexity
separated encoding of dependent sources, provided that wéour algorithm.
decode them jointly. The rest of the paper is organized as follows. In Section
A particular case of distributed source coding is the2 we describe the DISCOVER motion interpolation method.
source coding with side information: the variable gen-  In Section 3 we illustrate the method proposed in [4] and
erated by the source, is statistically dependen¥ of The  after we propose a variant to our method in order to reduce
variableY is available at the decoder, but not at the encodethe complexity. Experimental results are reported in ecti
Y is called side information. Then, Ry = H(Y), a rate 4, while conclusions and future work are in Section 5.
Rx > H(X]Y) is sufficient for recoveringK without loss of
information, according to the Slepian-Wolf theorem. 2. STATE OF THE ART: DISCOVER MOTION
While Slepian-Wolf theorem is about lossless coding, the INTERPOLATION ALGORITHM

problem of lossy coding was solved by Wyner and Ziv [6].

They proved that there is no rate increase in the sourcegodirP€ of the most popular methods for image interpolation is
with side information with respect to the joint coding for a the method proposed in the DISCOVER project [3]: it con-
given quality, and conversely, there is no quality loss for &5IStS in & linear interpolation between two adjacent KFs. Fo
given rate, subjected to some mild constraints. example, if the GOP size is equal to 2, we use the KFs
andly, 1 for the estimation of the WZ. The DISCOVER

1LetH(X) be the entropy oK andH (X,Y) the joint entropy o andY.  method consists of four steps:
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Figure 1. Bidirectional motion estimation in DISCOVER.

The distance betweaandp is small, such that the motion
in p can be approximated with the motiondn

1. Low Pass Filter. The two KFs,lx_; andlx1, are spa-
tially filtered in order to reduce noise.

2. Forward Motion Estimation. A block matching is per-
formed fromly, 1 tolx_1. Letv be the motion vector field
(MVF) calculated at this step (green arrows in Fig. 1).

3. Bidirectional motion estimation. For each macroblock
(let p be its center) we search the vectothat intercepts
the framely in the point closest tp. Let g be this inter-
section. Then, the movement jncan be approximated
as the movement ig (black vector in Fig.1). Afterwards,
the vector is splitintav (backward MVF) andh (forward
MVF) (light-blue vectors in Fig. 1)

4. Refinement and median filter. The vectorsw andu are

w, as in DISCOVER algorithm (black dashed vectors in
Fig. 2(a)).

2. Motion estimation from lxy1 to lxi3. We perform a
block matching motion estimation frotg,; to lx+3. Let
p be the center of the MB in the frantgthat we want to
estimate. LeBy be the MB in the framé,, centered irp.
Then, we search for the vectarstuch that the following
functional is minimized:

2

q

J@) = BE P (q) —BE'3 (@) |+ Alli—3u], (1)

whereA > 0 is a regularization constant. The regulariza-

tion term is added for penalizing too large deviationsof ~

from 3u, i.e. the solution that we would have supposing

a linear motion along the four frames.

3. Interpolation. Now, we can trace the trajectory of the
object along the various KFs by interpolating the posi-
tionsp+u(p), p+u(p), p+w(p), andp+w(p), re-
spectively at the instants— 3, k— 1, k+ 1 andk + 3.
Then, by sampling it irk, we obtain the estimated posi-
tion of the object in the framk. Let p be this position.
We can then estimate the motion vectors centereg in ~
(red vectors in Fig. 2(a)).

4. Vector adjustment. We suppose that the distance be-
tweenp andp is so small, such that the motion pnis
the same as ip,that we can approximate the vectors in
p with the vectors estimated ip (green dashed vectors
in Fig. 2(a)).

Afterward, we repeat this for each macroblock. The average

of the two compensations will be the WZF estimation.

We repeat this procedure for each macroblock. After-
ward, we motion-compensate the fralge, by the backward
MVF andly_; by the forward MVF. The average of the two
compensations will be the WZF estimation.

3.2 Fast HOMI

refined around their initial positions in order to minimize The complexity of the interpolation procedure described in

the SAD (or SSD) between the MB pointed tyin Iy, 1
and the one pointed by in I,_;. Afterwards, a median

the previous section can be reduced, because at the instant
k, we have already estimated the forward motion vector field

filter is applied to the two MVFs in order to smooth them. v, from the framely_» to the framel,_3 and the backward

Finally, lx.1 is motion-compensated witlv and l,,_;

with u. The average of these two predictions is the estim

tion of the WZF.

3. PROPOSED METHODS

In [4] we proposed a higher order motion interpolation
method in order to increase the results given by DISCOVE
For the sake of clarity, we report here the basic ideas of thi
algorithm and after we propose some variants to this alg

rithm.

3.1 Higher order motion interpolation (HOMI)

While DISCOVER motion interpolation method performs a 2.

linear interpolation between the two adjacent Hgs, and

lk.1 (by supposing the GOP size equal to 2), we proposed

in [4] a higher motion interpolation by using four KFg.3,
lk_1, Iks1 andly 3. Our method consists into four steps:

1. Initialization. By using onlyly.; andly,_; we compute
the backward and the forward MVF, respectivalyand

a_

o

motion vector fieldz from I_» to Ix_;. In this way, it is only
necessary the motion vector field frdg 1 to lx. 3 while it

is not necessary to perform the motion estimation filgm

to Ix_3: we can exploit the MVF computed at instdat- 2.

This method is less robust than the first one, because instead
of the motion estimation frorty_1 to I_3, we just exploit the
estimation of two MVFsv andz. This gives us a less accu-

Rrate motion estimation. On the other hand, thanks amdz,

g/e can find another macroblock in the frame,: then we
can interpolate the data by using five points (not regularly
spaced). The procedure consists therefore of the following
five steps (see Fig. 2(b)):
1. Initialization. - We estimateu from Iy to Iy_; and w
from I to I 11 by DISCOVER method.
Motion estimation from I3 to lx,3. We perform a
block matching motion estimation froip, ; to Ik, 3 and
we find the positiorp + w.
3. Motion estimation from Ix_; to Ix_» and from l_» to
lk_3. We search for the vectar(q) that points inl,_;
to the position closest tp + u(p). Then, we estimate
the intersection of the trajectory in the frarhe, as the
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Figure 2: (a) HOMI method for motion estimation. (b) Propbg&erpolation method (Fast HOMI) for WZF estimation by
exploiting the previous estimated MVF.

point p + t, with t = u(p) —z(q). For the estimation 4. Interpolation. Finally, we interpolate a vector function

of the intersection of the trajectory ip_3, we use the with the five valuep + 4, p+t, p+u(p), p+w(p) and
vectorv(q). The intersection point will bg + @, with p +w(p) respectively, at the instanks- 3, k—2,k— 1,
a(p) =t+v(q). k+1 andk+ 3, in order to find its value at the instakt
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GOPsize[ 2 1 4 8 QP [ book arrival | ballet | jungle [ breakdancer
A 50| 20 | O GOP size = 2
31 0.256 0.263 [ 0.126 0.048
. ; ; 34 0.202 0.214 | 0.105 0.048
Table 1: Values of for different GOP sizes 37 0.157 o129 | 0082 0.041
40 0.106 0.112 | 0.055 0.033
. i . GOP size =4
which will be denoted by. 31 0.431 0.255 | 0.354 0.123
5. Vector adjustment. It is done as in the previous section. 34 0.403 0.220 | 0.336 0.116
) ) 37 0.347 0.175 | 0.306 0.108
We observe that the complexity of Fast HOMI is about the 40 0.282 0.135 | 0.262 0.093
half of the original algorithm. GOPsize=8
31 0.226 0.042 | 0.027 0.039
. . 34 0.216 0.039 | 0.011 0.031
3.3 Increasmg the denS|ty of the MVF 37 0.201 0.028 | 0.001 0.025
40 0.173 0.021 | 0.000 0.022

When we perform the block matching, we consider a block
By, centered irp and whose size il x N. Then, we letp Table 2:Apsng [dB] for HOMI 8

vary in {(nM,mM)}(n m<c, WhereC C Z? is such that we

compute a vector for eadl x M block in the image.

Although the conditioM = N is usually chosen, in order difficult, and all methods are almost equivalent (differemic
to increase the Sl quality we can use denser MVF by selectisually under L dB).
ing a value forM smaller thanN. We observe that, while Then, we observe that denser MVFs improve the Sl qual-
we can increase the density by reducMavithout particular ity for GOP size equal to 2, while they do not help in the
constraint (excepted for the computational complexityy, W case of long-term estimation. We ascribe this behavior to
cannot allow arbitrary variations & (the block size) since  the difficulty of estimating images that are quite far frora th
if the blocks are too small, the matching may suffer fromreferences.
noise. On the contrary, thanks to the block overlap, we can  Finally we observe that the fast versions of HOMI have
densify the MVF without sacrificing robustness. So, we willfajrly good performances, since the quality of the Sl is alto
consideN = 8 in the following, but we will use denser MVF  ynchanged in many cases, while the computational complex-
with M <N. , ity is halved.

We can therefore modify both the HOMI and the Fast  The last experiment consisted in computing end-to-end
HOMI technique, ending up with 4 SI generation techniqueperformancesi fe. rate reduction and PSNR improvement) of
HOMI with N = M = 8 (that is, the one proposed in [4]), the proposed techniques when inserted into a complete DVC
referred to as HOMI8 from now on; HOMI wittN = 8  coder like the one in [1], by using the the Bjontegaard metric
and M = 4, which we will indicate as HOMI4; and the [2]. The results are shown from Tab. 7 to Tab. 9, and they
fast version of these techniques, referred to as FastHOMIgre not surprising: the proposed method are in generalrbette

and FastHOMI4. The three new techniques (along withhan the reference DISCOVER, excepted for GOP size equal
HOMI8 for completeness), will be compared with the ref-to 8, where they are practically equivalent.

erence method, DISCOVER, which does not use the overlap. \oreover, even from the point of view of RD perfor-

mances, denser MVF are better than sparser ones, and the fast
4. EXPERIMENTAL RESULTS version of HOMI are as effective as the original algorithms.
] ) We remark that globally, the better techniques is HOMI4,
In order to use the proposed Sl generation techniques, Wghich allows rate reductions up to 8% w.r.t. the reference.
need to tune the regularization parametéor different GOP As a final observation, we note that increasing the quality
sizes. At this end we can use the results reported in [4] fopf the side information does not mean always an increasing
HOMI8, since we consider that depends mainly on the of the RD performances. For example, the HOMI8 method
block sizeN. For the sake of completeness, we report theyas a better side information than DISCOVER for GOP size
optimal values ofA as a function of the GOP size in Tab. 1. equal to 8, but worser RD performances. This confirms the
We found that the optimal value of decreases when the jntyition that the PSNR with respect to the original WZF is
KFs are farther apart. This is reasonable since in this case Wyot necessarily an accurate method for evaluating the $1 qua
must allow larger vector deviations to take into account thq'ety, even though for the moment is the most common, since

movement. _ in most cases the RD performances are well correlated to the
Now we can compare the different methods. We used thgide information PSNR.

test sequencdsook arrival ballet, jungle andbreakdancer

at a resolution of 384 512 pixels. We encoded the KFs by

the INTRA mode of H.264, using four quantization step val- 5. CONCLUSIONS AND FUTURE WORK

ues, namely 31, 34, 37 and 40. At this stage, we use as evadased on the previous work in [4], where we propose a

uation metric the PSNR of the Sl with respect to the originahigher order motion interpolation, we continue to explore

WZF. More precisely for each of the four methods, we com-higher order motion interpolation techniques in order to in

pute the PSNR difference (averaged along each sequenagkase the Sl quality. We try to increase the density of the

with respect to DISCOVER. This quantity is callAgsnr estimated MVF and at the same time to reduce the complex-
The results of this test are reported in Tab. 2 to 5. Waty by reusing the already estimated MVF.

observe that in almost all cases, the quality of the side<info ~ The technique using dense MVFs is successful both in

mation is improved w.r.t. DISCOVER. The only exception increasing the Sl quality (up to 0.47 dB better than the ref-

is for GOP size equal to 8, when a good Sl estimation irence method DISCOVER), and in improving the end-to-
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QP [ book arrival [ ballet | jungle [ breakdancer
GOP size =2
31 0.464 0.379 | 0.194 0.052
34 0.384 0.268 | 0.186 0.035
37 0.334 0.142 | 0.129 0.072
40 0.236 0.122 | 0.093 0.048
GOP size =4
31 0.472 0.204 | 0.319 0.134
34 0.467 0.171 | 0.306 0.122
37 0.422 0.149 | 0.265 0.106
40 0.322 0.132 | 0.229 0.074
GOP size =8
31 -0.012 -0.049 | 0.008 -0.016
34 0.027 -0.026 | -0.007 -0.002
37 0.012 -0.050 | -0.012 0.018
40 0.039 -0.002 | -0.044 -0.006

QP [ book arrival [ ballet | jungle | breakdancer
GOP size=2
31 0.408 0.384 | 0.174 0.063
34 0.348 0.278 | 0.172 0.043
37 0.306 0.149 | 0.121 0.058
40 0.214 0.150 | 0.091 0.034
GOP size =4
31 0.330 0.328 | 0.330 0.085
34 0.316 0.267 | 0.315 0.082
37 0.286 0.239 | 0.289 0.052
40 0.193 0.211 | 0.242 0.038
GOP size =8
31 -0.279 -0.060 | 0.120 -0.041
34 -0.229 -0.046 | 0.108 -0.026
37 -0.261 -0.073 | 0.106 -0.027
40 -0.227 -0.107 | 0.047 -0.058

Table 3ZAPSNR[dB] for HOMI 4

Table 5:Apsnr[dB] for Fast HOMI 4

QP | book arrival [Ggﬂlgitze[ _juzngle | breakdancer [ [ book arrival | ballet | jungle | breakdancer]
- GOP size =2
31 0.199 0.239 | 0.102 0.018
34 0139 | 0.199 | 0,086 | 0.015 Br (%) ‘ -1.309 ‘ -4.815 ‘ -1.649 ‘ -2.645
40 0.080 0.114 | 0.045 0.009 GOPsize =4
o = Ar (%) -4.328 -3.527 | -5.856 -3.595
GOP size =4 R
31 0.316 0.340 | 0.361 0.081 Apsnr[dB] ‘ 0.279 ‘ 0.239 ‘ 0.331 ‘ 0.169
34 0.320 0.315 | 0.343 0.066 GOPsize =8
37 0.263 0.255 | 0.313 0.069 AR (%) 1.521 -0.392 | -1.056 -0.123
40 0.201 0.202 | 0.268 0.051 Apsnr[0B] -0.086 -0.053 | 0.060 0.029
GOP size =8 ) ]
31 -0.040 0.005 | 0.135 -0.011 Table 6: Rate-distortion performance for HOMI 8
34 -0.035 -0.008 | 0.120 0.004
37 -0.044 -0.020 | 0.112 -0.016 - .
40 -0.036 .0.015 | 0.094 -0.011 [ [ bookarrival | ballet | jungle | breakdancer|
GOP size =2
. Br (%) 5.655 6.080 | -4.144 4259
Table 4:Apsnr[dB] for Fast HOMI 8 Asin [dB] 0191 0.624 | 0.497 0.198
GOP size=4
. . . Ar (% -6.211 -4.481 | -8.220 -5.240
_end RD performances, with a rate reduction attaining 8.2% AES(NR)[dB] ‘ 0.361 ‘ 0.334 ‘ 0.430 ‘ 0.345
in the best case. Moreover we show that fast version of the GOPsize=8
HOMI algorithms have almost the same performance as the [Ar (%) ‘ 1.958 ‘ -0.928 ‘ 2.372 ‘ -3.001
original one, but with an halved complexity. These good re- | Apsnr[dB] -0.129 0.108 | 0.139 0.144
sults encourage us to keep looking for efficient SI methods. _ , ,
A technique we intend to investigate will exploit the previ- Table 7: Rate-distortion performance for HOMI 4
ous WZF which has been fully reconstructed (i.e. by using
the parity bits to correct it) to produce more accurate nmtio | [ bookarrival [ ballet [ jungle | breakdancer]
vector fields. GOP size =2
Ar (%) -0.957 -4.268 | -1.283 -2.100
REFERENCES Apsnr[0B] -0.052 0.436 | 0.308 0.170
GOP size=4
[1] A. Aaron, R. Zhang, and B. Girod. Wyner-Ziv coding of matiwideo. Br (%) ‘ -3.814 ‘ -4.890 ‘ -6.598 ‘ -2.870
In Asilomar Conference on Signals and SysteReific Grove, Cali- Apsnr[dB] 0.294 0.398 | 0.335 0.192
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[2] G.Bjontegaard. Calculation of average PSNR differertmetween RD- ﬁR (A))[dB] ‘ ](')%2722 ‘ 852537 ‘ 01?8;3 ‘ 3'37222
curves. INVCEG MeetingAustin, USA, Apr. 2001. PSNR : : : :
[3] C.Guillemot, F. pereira, L. Torres, T. Ebrahimi, R. Leatiaand J. Os- Table 8: Rate-distortion performance for Fast HOMI 8
termann. Distributed monoview and multiview video coding: iBss
problems and recent advancekeEE Signal Processing Magpages
67-76, Sept. 2007. [ | book arrival [ ballet | jungle | breakdancer|
[4] G. Petrazzuoli, M. Cagnazzo, and B. Pesquet-Popesagh étider mo- GOP size =2
tion interpolation for side information improvement in DVC.Ihterna- Ar (%) ‘ -4.497 ‘ -5.438 ‘ -3.74 ‘ -3.315
tional Conference on Acoustics, Speech and Signal Prowg$allas, Apsnr[dB] 0.122 0.703 | 0.564 0.237
TX, 2010. GOPsize =4
[5] D. Slepian and J. K. Wolf. Noiseless coding of correlaiigfdrmation ﬁR (%)[dB] ‘ 61;778 ‘ gf;; ‘ gggg ‘ (?3?;?62
sourceslEEE Trans. Inform. Theory19:471-480, July 1973. PSNR - —F a 5 - :
size =
[6] A.Wynerand J. Ziv. The rate-distortion function for soe coding with AR (%) 3.425 0.157 | -2.454 21901
side information at the receivelEEE Trans. Inform. Theory22:1-11, Apsnr[dB] -0.228 -0.099 | 0.127 0.105

Jan. 1976.
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Table 9: Rate-distortion performance for Fast HOMI 4



