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ABSTRACT

Human skin color detection plays an important role in the applica-
tions of skin segmentation, face recognition, and tracking. To build
a robust human skin color classifier is an essential step. This paper
presents a classifier based on beta mixture models (BMM), which
uses the pixel values in RGB space as the features. We propose
a Bayesian estimation method based on the variational inference
framework to approximate the posterior distribution of the param-
eters in the BMM and take the posterior mean as a point estimate
of the parameters. The well-known Compaq image database is used
to evaluate the performance of our BMM based classifier. Com-
pared to some other skin color detection methods, our BMM based
classifier shows a better recognition performance.

1. INTRODUCTION

Human skin color detection plays an important and effective role in
the applications of skin segmentation, face recognition, and tracking
problems [1]. Many heuristic and pattern recognition based meth-
ods have been proposed in the past decades. Different color spaces
and methods have been evaluated and compared [2, 3, 4]. From
the feature point of view, several color spaces could be used for
skin detection such as Red-Green-Blue (RGB) [5, 2, 6], CIE-xy,
YIQ, YCbCr [7], Tint-Saturation-Luminance (TSL) [8], and Hue-
Saturation-Value/Intensity (HSV/HSI) [9]. From the standpoint of
classification methods, the explicitly defined threshold (e.g. normal-
ized R/G ratio [2]), non-parametric probabilistic model [2, 6], and
parametric probabilistic model [6, 7] are the most efficient methods
applied in the area of skin color detection.

As the RGB space is the mostly used space, we take the pixel
value in RGB space as features. Since it has be shown [10, 11]
that beta mixture models (BMM) can model data with compact
range better than Gaussian mixture models and the pixel value is
in [0, 255], we apply BMM to model the skin pixel distribution in
RGB space. With the principles of the variational inference (VI)
framework [12, 13, 14, 15], we propose a Bayesian estimation al-
gorithm to estimate the parameter distributions. By applying a set
of non-linear approximations, the posterior distribution of the pa-
rameters in the BMM is obtained. The posterior mean is considered
as the point estimate of the parameters.

The BMM-based classifier is trained and tested with the well-
known Compaq image database [6]. The Receiver Operating Char-
acteristic (ROC) [16] is used to evaluate the performance of the
BMM classifier. This paper presents a method based on the VI
framework for the Bayesian estimate of the parameters in the BMM
and shows the skin/non-skin color detection results with the BMM
classifier.

2. SKIN COLOR MODEL

In the past decades, different color models were proposed for var-
ious properties. The color models used nowadays are mostly ori-
ented to applications. The RGB color space originated from the
CRT display and describes the color in terms of three primary color
channels: red (R), green (G), and blue (B). This is the mostly used
space for image display and storage. Fig. 1 shows a 24-bit RGB
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Fig. 1. Human face image and the corresponding skin histograms
for RGB channels.

color image with a human face and the corresponding (normalized)
histogram for each color channel. The pixel values of each color
channel are linearly compressed to [0, 1] by xc := xc/255, c ∈
{r, g, b}.

Although the RGB space is sensitive to the luminance, and the
images of one object taken in different environments have diverse
characteristics on the RGB space [2], the mixture of probabilistic
models (e.g. skin probability map in [2, 6], Gaussian Mixture Mod-
els (GMM) in [6]) can still model the distribution of the pixel values
in RGB space efficiently. By building the three-dimensional proba-
bilistic skin and non-skin models in RGB space, the distribution of
both skin and non-skin pixels can be represented in a probabilistic
way. A pixel could be classified as a skin pixel or a non-skin pixel
in an optimized way by utilizing the Bayesian classifier [17]. Sev-
eral studies used parametric or non-parametric techniques to model
the pixel value distribution. However, non-parametric techniques,
such as histogram based models, need a large amount of training
data and have high computational cost. With the parametric tech-
nique, we can obtain the parameters of the model, and this is more
convenient in practical problems.

From Fig. 1 we can observe that the pixel values in the RGB
space are in a compact range for each color channel (in the 24-bit
RGB image, the range is [0, 255] and can be linearly compressed
to the range [0, 1]). Furthermore, the distribution of the skin color
pixel is skewed in each channel. Indeed the conventional GMM can
model any distribution shape with a proper number of components.
Since it was shown that the BMM outperforms GMM with the same
number of components in gray image classification [11], and the
color image in RGB space can be considered as the composition
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of three gray images, one from each color channel, the BMM is
a more reasonable choice to model the distribution of skin color.
The correlations among the three channels can be represented by
mixture models.

3. BETA MIXTURE MODELS

The beta distribution is a family of continuous probability distribu-
tions defined on the interval [0, 1] with two positive real parameters.
The probability density function of the beta distribution is

Beta(x;u, v) =
1

beta(u, v)
xu−1(1− x)v−1 , (1)

where beta(u, v) is the beta function

beta(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
(2)

and Γ(·) is the gamma function defined as Γ(z) =
∫ ∞
0
tz−1e−tdt .

Multivariate data are in most cases statistically dependent.
However, for any random vector x consisting of L elements, the de-
pendencies among the elements x1, . . . , xL can be represented by
a mixture model, even if each specific mixture component can only
generate vectors with statistically independent elements. Therefore,
we define the multivariate BMM as

f(x;Π,U,V) =
I∑

i=1

πiBeta(x;ui,vi)

Beta(x;ui,vi) =

L∏
l=1

Beta(xl;uli, vli) ,

(3)

where Π = {π1, . . . , πI}, U = {u1, . . . ,uI}, and V =
{v1, . . . ,vI}. {ui,vi} denote the parameter vectors of the ith mix-
ture component and uli, vli are the (scalar) parameters of the beta
distribution for element xl. For representing the skin color distribu-
tion, each observation x is a three-dimensional vector with L = 3
and each element xl is in the range [0, 1]. In the following sections,
we will uss observed pixel data X = {x1, . . . ,xN} approximate
the posterior distribution f(U,V,Π|X) via the variational infer-
ence (VI) framework in section 3.3 and the algorithm for Bayesian
estimation will be listed in section 3.4.

3.1 Bayesian estimation and conjugate prior

We make a Bayesian estimate of the parameters in the BMM. An
important step in the Bayesian estimation is to find the conjugate
prior f(Z) such that the posterior distribution f(Z|X ) has the same
form as f(Z). The conjugate prior distribution to the beta distribu-
tion in (1) is

f(u, v) =
1

C

[
Γ(u+ v)

Γ(u)Γ(v)

]ν0
e−α0(u−1)e−β0(v−1) , (4)

where α0, β0, ν0 are free positive parameters and C is a normaliza-
tion factor (a function of α0, β0, ν0) such that∫ ∞

0

∫ ∞

0

f(u, v)dudv = 1 .

Then we obtain the posterior distribution of u, v as (with N i.i.d.
scalar observations x = {x1, . . . , xN})

f(u, v|x) = f(x|u, v)f(u, v)∫ ∞
0

∫ ∞
0
f(x|u, v)f(u, v)dudv

=

[
Γ(u+v)
Γ(u)Γ(v)

]νN
e−αN (u−1)e−βN (v−1)∫ ∞

0

∫ ∞
0

[
Γ(u+v)
Γ(u)Γ(v)

]νN
e−αN (u−1)e−βN (v−1)dudv

,

(5)

where 1

αN = α0 −
N∑

n=1

lnxn ,

βN = β0 −
N∑

n=1

ln(1− xn) ,

νN = ν0 +N .

3.2 Variational inference and factorized approximation

Analytically, we can not find a closed-form expression for the pos-
terior distribution in (5) due to the computationally intractable inte-
gration expression in the denominator. Some stochastic techniques
(e.g. Gibbs sampling [10]) can be used to calculate the posterior
distribution numerically. We propose a method based on the VI
framework [12] in this paper. According to the VI framework, the
posterior density function of variable Z given the observation X
(i.e. f(Z|X )) is approximated by g(Z). We decompose the log
likelihood ln f(X ) as

ln f(X ) = L(g) +KL(g ‖ f) , (6)

where

L(g) =
∫
g(Z) ln

f(X ,Z)

g(Z)
dZ (7)

and KL(g ‖ f) is the Kullback-Leibler (KL) divergence defined as

KL(g ‖ f) = −
∫
g(Z) ln

f(Z|X )

g(Z)
dZ . (8)

Since the KL divergence is a non-negative measurement, to maxi-
mize the lower bound L(g) is equivalent to minimize the KL diver-
gence. Especially, when g(Z) is equal to f(Z|X ), the KL diver-
gence vanishes and the lower bound reaches the true log likelihood
ln f(X ). If the target distribution is analytically intractable, some
approximations can be used to achieve tractability with the factor-
ized approximation (FA) method [12, 18].

The FA method partitions the variable Z into disjoint parts
{Zm}, m = 1, . . . ,M and decomposes the distribution as

g(Z) =

M∏
m=1

gm(Zm) . (9)

Amongst all the distributions having the form in (9), we need to seek
a distribution g(Z) that drives the lower bound L(g) to be largest.
By substituting (9) into (7) and denoting gm(Zm) by gm simply,
we obtain

L(g) =
∫ M∏

m=1

gm

{
ln f(X ,Z)−

M∑
m=1

ln gm

}
dZ

=

∫
gn

⎧⎨⎩
∫

ln f(X ,Z)
∏
m�=n

gmdZm

⎫⎬⎭ dZn

−
∫
gn ln gndZn + const.

=

∫
gn ln f̃(X ,Zn)dZn −

∫
gn ln gndZn + const. ,

(10)

1To prevent the infinity quantity in the practical implementation, we as-
sign ε1 to xn when xn = 0 and 1− ε2 to xn when xn = 1. Both ε1 and
ε2 are slightly positive real numbers.
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where

ln f̃(X ,Zn) =E∗�=Zn [ln f(X ,Z)] + const.

=

∫
ln f(X ,Z)

∏
m�=n

gmdZm + const. .
(11)

By recognizing that the first two integrals in the final line of (10) is
a negative KL divergence between gn(Zn) and f̃(X ,Zn), we can
maximize L(g) with respect to any possible form of qn(Zn), while
keeping gm�=n(Zm) fixed, by minimizing the KL divergence. The
optimal value occurs when gn(Zn) = f̃(X,Zn), which gives us
the optimal solution to gn(Zn) as

ln g∗n(Zn) = E∗�=Zn [ln f(X ,Z)] + const. . (12)

3.3 Factorized approximation for BMM

The prior of the beta distribution is analytically intractable. With
the principles of FA, the conjugate prior in (4) can be approximated
as

f(u, v) ≈ f(u)f(v). (13)

Since both u and v are nonnegative variables, we assign the
Gamma distribution to u, v respectively as

f(u;μ, α) =
αμ

Γ(μ)
uμ−1e−αu, α, μ ∈ R+

f(v; ν, β) =
βν

Γ(ν)
vν−1e−βv, β, ν ∈ R+ .

(14)

Furthermore, by introducing the Dirichlet distribution as the prior
distribution of the mixing coefficients, the probability density func-
tion of Π can be written as

f(Π) = Dir(Π|c) = C(c)

I∏
i=1

πci−1
i , (15)

where C(c) = Γ(ĉ)
Γ(c1)···Γ(cI)

, ĉ =
∑I

i=1 ci .

For each observation xn, the corresponding zn =
(zn1, . . . , znI)

T is an indication vector with one element equals to
1 and the rest equal to 0, where zni = 1 means that the nth obser-
vation is generated from the ith component in the BMM. The con-
ditional distribution of X = {x1, . . . ,xN} and Z = {z1, . . . , zN}
given latent variables {U,V,Π} is

f(X,Z|U,V,Π)

=f(X|U,V,Π,Z)f(Z|Π)

=f(X|U,V,Z)f(Z|Π)

=
N∏

n=1

I∏
i=1

[πiBeta(xn|ui,vi)]
zni .

(16)

The logarithm of the joint distribution function of X = {X}
and Z = {U,V,Π,Z} is given by

L(X ,Z) = ln f(X ,Z)

=

N∑
n=1

I∑
i=1

zni

{
ln πi +

L∑
l=1

ln
Γ(uli + vli)

Γ(uli)Γ(vli)

+
L∑

l=1

[(uli − 1) ln xln + (vli − 1) ln(1− xln)]

}

+

L∑
l=1

I∑
i=1

[(μli − 1) ln uli − αliuli]

+
L∑

l=1

I∑
i=1

[(νli − 1) ln vli − βlivli] +
I∑

i=1

(ci − 1) ln πi + const. .

(17)

3.4 Algorithm of Bayesian estimation

The latent variables we have now are U, V, and Π with the hyper-
parameters α, β, μ, ν , and c. The optimal distribution for U and V
are obtained by taking the expected value of L(X ,Z) as (element-
wise)

ln f∗(uli;μli, αli) = E∗�=uli
[L(X ,Z)]

ln f∗(vli; νli, βli) = E∗�=vli [L(X ,Z)] .
(18)

Obviously, the expectations in the RHS of (18) could not lead to
a closed-form expression. The second-order Taylor expansion of
ln Γ(uli+vli)

Γ(uli)Γ(vli)
in terms of (lnuli, ln vli) can be proven to be a lower

bound [19]. The expectation of this lower bound can yield the opti-
mal solution to U,V asymptotically. The update equations for the
hyper-parameters of U,V, and Π are listed as follows (element-
wise):

c∗i =ci0 +

N∑
n=1

E [zni]

μ∗
li =μli0 +

N∑
n=1

E [zni]uli {ψ(uli + vli)− ψ(uli)

+ vli · ψ
′
(uli + vli)(Ev [ln vli]− ln vli)

}
α∗
li =αli0 −

N∑
n=1

E [zni] ln xln

ν∗li =νli0 +
N∑

n=1

E [zni] vli {ψ(uli + vli)− ψ(vli)

+ uli · ψ
′
(uli + vli)(Eu [ln uli]− lnuli)

}
β∗
li =βli0 −

N∑
n=1

E [zni] ln(1− xln) ,

(19)

where (the estimation of ρni is in (20) in the next page)

u =
μ

α
, v =

ν

β

E [zni] =
ρni∑I

k=1 ρnk

Eu[ln u] = ψ(μ)− lnα

Ev[ln v] = ψ(ν)− lnβ

Eu

[
(ln u− ln u)2

]
= [ψ(μ)− (lnμ)]2 + ψ

′
(μ)

Ev

[
(ln v − ln v)2

]
= [ψ(ν)− (ln ν)]2 + ψ

′
(ν) .

To start the iterations, the values of α, β, μ, and ν are
chosen such that the prior distributions are assigned with non-
informative distributions (flat broad distribution). The parameters
for the Dirichlet distribution (ci, i = 1, . . . , I) are assigned with
a small value (i.e., 0.001) to ensure the number of mixture compo-
nents is controlled by the data. By updating the hyper-parameters
α, β, μ, ν , and c recursively in order, the algorithm will converge
so that the KL divergence in (8) is almost equal to 0. Compared to
the conventional expectation maximization (EM) based maximum
likelihood estimation (MLE), this Bayesian estimation can prevent
overfitting and estimate the effective number of mixture compo-
nents automatically. The latent variables are all unimodally dis-
tributed and the posterior distributions are highly peaked. Consid-
ering the posterior mean as the point estimate of uli, vli, we take
ûli = uli = μ∗

li/α
∗
li and v̂li = vli = ν∗li/β

∗
li. More details about

the derivations of this algorithm can be found in [19].
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lnρni ≈ E [ln πi] +
L∑

l=1

[(uli − 1) lnxln + (vli − 1) ln(1− xln)]

+
L∑

l=1

{
ln

Γ(uli + vli)

Γ(uli)Γ(vli)
+ uli [ψ(uli + vli)− ψ(uli)] (E [ln uli]− ln uli) + vli [ψ(uli + vli)− ψ(vli)] (E [ln vli]− ln vli)

+ 0.5 · u2
li

[
ψ

′
(uli + vli)− ψ

′
(uli)

]
E
[
(ln uli − lnuli)

2] + 0.5 · v2li
[
ψ

′
(uli + vli)− ψ

′
(vli)

]
E
[
(ln vli − ln vli)

2]
+ uli · vli · ψ

′
(uli + vli)(E [lnuli]− ln uli)(E [ln vli]− ln vli)

}
(20)

Fig. 2. Original images and the corresponding skin detection re-
sults.

4. SKIN COLOR/NON-SKIN COLOR DETECTION

The skin/non-skin Bayesian classifier [17] is applied here for detec-
tion. With the skin color pixels and non-skin color pixels, we train
two BMMs, one for each kind of pixels. Given a new pixel x, the
decision rule is⎧⎪⎨⎪⎩

If f(x|s)
f(x|∼s)

> λ · f(∼s)
f(s)

x ∈ s

else if f(x|s)
f(x|∼s)

< λ · f(∼s)
f(s)

x ∈∼ s

otherwise arbitrary decision

, (21)

where s and ∼ s denote skin and non-skin respectively. f(s) and
f(∼ s) are the prior skin color and non-skin color probabilities.
λ is a threshold introduced to adjust the trade-off between the two
kinds of decision errors. It is analyzed empirically by experiments.
The conditional likelihood of x is calculated as

f(x|c) =
I∑

i=1

πi

3∏
l=1

Beta(xl;u
c
li, v

c
li), c ∈ {s,∼ s} . (22)

5. EXPERIMENTAL RESULTS AND DISCUSSION

We applied our BMM classifier to the well-known Compaq image
database [6]. This database contains around 4600 skin images and
around 9000 non-skin images. For each skin color image, a cor-
responding mask is available in the database and used to separate
skin/non-skin areas. All the images in the database are color im-
ages obtained from the World Wide Web. Different ethnic people’s
skin colors are represented in the skin images. Also, the skin im-
ages in the database were taken under different angles, positions and
brightness conditions.

Table 1. Comparison of different methods for skin color detection

Method True Positive False Positive
Implicit mathematical 83.3% 15.6%

model [5] 90.7% 13.3%
Thresholding [2] 94.7% 30.2%

Bayes SPM in RGB [2] 93.4% 19.8%
SOM in TS [8] 78% 32%

Maximum entropy
80% 8%in RGB [20]

Bayes SPM in RGB [6] 80% 8.5%
90% 14.2%

GMM in RGB [6] 80% 9.5%
90% 15.5%

Elliptical boundary
90% 20.9%in CIE-xy [7]

Single Gaussian
90% 33.3%in YCbCr [7]

GMM in IQ [7] 90% 30%
Our method 80% 7.2%

with BMM in RGB 90% 11.8%
95% 19.7%

For each evaluation round, the Compaq database was par-
titioned randomly into a training sub-database and a test sub-
database. Each sub-database consists of skin and non-skin images.
We randomly selected a training set from the training sub-database
with 500, 000 skin color pixels and 1, 500, 000 non-skin color pix-
els. Also, a test set with the same size was randomly drawn from
the test sub-database. These pixels were selected randomly and la-
belled. For the training procedure, the labelled pixels from the train-
ing set were used to train the skin color model and non-skin color
model respectively. Then the obtained models were applied to clas-
sify the pixels in the test set to skin or non-skin categories by the
rules in (21). Both the skin color and non-skin color were labelled
so that we can calculate the correct decision of classifying the skin
pixels into skin (True Positive Rate (TPR)) and the false decision
of classifying non-skin pixels into skin (False Positive Rate (FPR))
by comparing the labels and the decisions the model made. Fig.
2 shows some detection results from our model. The overall per-
formance is good and both the skin area of the black lady and the
white couples were detected. The missing part on the man’s left arm
and misclassified part of the hair in a relative brighter background
indicates that the illuminance of the image has influence on the de-
tection result. Also, the misclassified part in the background could
possibly be adjusted by some texture based methods.

To evaluate the performance of our BMM classifier, we apply
the ROC analysis [16]. In the ROC curve, the TPR is plotted on
the vertical axis and the FPR is plotted on the horizontal axis. Any
point in the ROC curve indicates a better performance if the point is
closer to the northwest in the coordinates (the best possible point is
TPR = 100% and FPR = 0%). By changing the value of λ in (21),
different TPR-FPR pairs are obtained. The ROC curve consists of
these TPR-FPR pairs and shows the trade-off between the TPR and
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Fig. 3. Recognition score comparison of different methods.

FPR. Our BMM classifier reported 80% TPR with 7.2% FPR and
90% TPR with 11.8% FPR. The accuracy rate (the total number
of correct decision out of the total input) of the classifier is 88.9%
when the TPR is equal to one minus the FPR. To prevent the effect
of randomness, we executed 60 rounds of the train-test procedures
mentioned above. The mean values of the TPR, the FPR and the
accuracy rate are reported.

Some other classifiers based on the pixel probabilistic model
were also analyzed with the Compaq database in the previous liter-
ature [5, 2, 8, 20, 6, 7]. They reported different classification scores
with different methods and with different color spaces (e.g. RGB,
YCbCr). The best classification scores from some previous stud-
ies and our BMM classifier are listed in table 1. As mentioned in
[21], if the transformation from one color space to another is invert-
ible and provided the optimal skin classifier for the color space is
used, the differences of the color space does not have influence on
the classifier’s performance. Although different methods used dif-
ferent separations of the database and employed different learning
strategies, it is still interesting to compare our ROC curve with the
results in table 1. In Fig. 3, all the results listed in table 1 are in
the southeast side of the ROC curve, which means that our BMM
classifier outperforms all the other methods. For some other tasks
of classification with data in a compact range, the BMM is probably
also a promising model.

6. CONCLUSION

This paper presented a BMM-based classifier for the task of human
skin/non-skin color detection. A Bayesian estimation algorithm for
the parameters was proposed. With the variational inference frame-
work and a set of non-linear approximations, the posterior distribu-
tions for the BMM parameters were approximated and the posterior
mean was used as the point estimate of the parameters.

The BMM classifier was applied to the well-known Compaq
image database, using the pixel values in the RGB color space as the
features. The overall detection performance is good. In comparison
with other methods based on pixel probabilistic models, our BMM
classifier outperforms the previous results.
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