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ABSTRACT
In this paper we use a novel framework, the Microcanon-
ical Multiscale Formalism (MMF), to analyze speech
signals. The MMF is based on the computation of geo-
metrical and local parameters — the singularity expo-
nents — which allow nonlinear analysis of their com-
plex dynamics and, particularly, characterize their in-
termittent signature. We define an accumulative mea-
sure on these exponents which has the nice property
of producing clear and distinctive changes at phoneme
boundaries. We present preliminary experiments on the
TIMIT database, which show that singular exponents
convey indeed valuable information about the local dy-
namics of speech. They also show that the measure we
define has a good potential to provide a new and power-
ful method for text-independent phonetic segmentation.

1. INTRODUCTION

It is theoretically and experimentally established that
turbulence and high nonlinear phenomena are present
in the speech production process [8, 2, 9, 10]. However,
the traditional approach to speech processing is based
on linear techniques which basically rely on the source-
filkter model. The linear approach cannot adequately
take into account or capture the complex dynamics of
speech. For this reason, nonlinear speech processing has
gained a significant attention during the last years.

In this paper we analyze the nonlinear dynamics of
speech using concepts and methods from the framework
of turbulent systems. Our approach is based on the Mi-
crocanonical Multiscale Formalism (MMF) which is a
novel framework to study the geometric-statistical prop-
erties of complex signals from a multiscale perspective
[12, 17]. The MMF has proved to be a valuable approach
to model and analyze empirical complex and turbulent
systems. This is particularly true for scale-invariant sys-
tems, i.e., systems that have corresponding statistical
properties at different scales [11].

The MMF is an extension of its more standard
Canonical counterpart [5, 1]. The particularity of MMF
is that it is based on geometrical and local parame-
ters, rather than relying on statistical averages — such
as structure functions or partition functions — as it is
the case in the canonical framework [11]. Hence, MMF
makes it possible to locally study the dynamics of com-
plex signals.

In this paper we show that speech signals lie in the
domain of applicability of MMF. We then use the local
parameters computed by the MMF, called singularity
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exponents [18], and show how they convey meaningful
information for the identification of phoneme bound-
aries.

Speech segmentation has many potential applica-
tions in speech technology, from speech synthesis to Au-
tomatic Speech Recognition (ASR). Segmentation could
be the first stage of an ASR systems, but the lack of sat-
isfying segmentation algorithms has led to a reversed
approach: a wide class of segmentation methods are
the adapted versions of HMM-based phonetic recogniz-
ers [15]. This class of segmentation methods are known
as text-dependent methods since they rely on an ex-
ternally supplied database of target vocabulary and its
manual transcriptions. On the other hand, there exists
a class of text-independent segmentation methods which
are based on the identification of variations in feature-
based distances [3]. Text independent methods are not
limited to a specific corpus and they rely on either some
model-based feature vectors or some raw spectral mea-
sures.

In this paper we exploit the behavioural changes in
distribution of singularity exponents over time, through
the use of an accumulative measure. We present prelim-
inary experiments that show that this measure can be
readily used to detect phoneme boundaries.

The paper is structured as follows. In Section 2 we
introduce the basic concepts of MMF, the algorithm for
singularity exponents estimation, and then present the
validation procedure for a given signal to be evaluated
under MMF. In Section 3 we show that speech is an
appropriate candidate for such formalism. In Section 4
we discuss the use of singularity exponents for segmen-
tation of speech signals. Finally, in Section 5 we draw
our conclusions.

2. MICROCANONICAL MULTISCALE
FORMALISM

In this section we give a brief overview on the basics of
MMF. A more extensive review of the theory and tools
can be found in [17].

MMEF is based on the computation of the local scal-
ing exponents of a given signal, whose distribution is the
key quantity defining its intermittent dynamics. These
exponents are a useful tool for the study of geometrical
properties of signals, and have been used in a wide va-
riety of applications ranging from signal compression to
inference and prediction [16, 13].

Before applying MMF to a given signal, the first step
is to study its validity for that signal. The validity of
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MMF for a signal relies on the existence of a local power-
law scaling behaviour at each point in the signal domain
[17]. Formally, for at least one scale-dependent func-
tional T, the following relation must hold for any time
t and for small scales 7:

T, (5(t) = a(t)r"® +o (rh(t)) (1)

r—0
where h(t) is the so-called singularity exponent [17]. The
multiplicative factor a(t) depends on the chosen func-
tional I',., but for some systems such as scale-invariant
ones, the exponent h(t) is independent of it. How-
ever it is beyond the scope of this paper to study
whether speech has scale-invariance properties. The
term o (rh(t)) means that for very small scales the addi-
tive terms are negligible compared to the factor and thus
h(t) dominantly quantifies the degree of “regularity” of
s(t) at each time instance.

If the functional is chosen as the linear increment,
T, (s(t)) = s(t +r) — s(t), the resulting exponents are
Holder exponents and they characterize causal power-
law correlations. When empirical data are analyzed, it
is often difficult to obtain good estimation of Holder ex-
ponents from linear increments. Discretization, noise
and long-range correlations hinder the practical calcu-
lation of these exponents from Eq. (1).

There is an alternative and more robust definition for
the functional I, in Eq. (1), which is defined from the
typical characterization of intermittence in turbulence:
the gradient-modulus measure. This measure on a ball
of radius r for a turbulent velocity field describes the
kinetic energy dissipation at scale r. Therefore, it is a
quantity linked to the transfer of energy from one scale
to another. Thus, the exponent associated to the power
law in terms of the scale characterizes the information
content and the dynamical transitions of the signal [5,
18]. The functional is defined as the r-radius gradient-
modulus measure divided by the volume of the r-radius

ball:
w [
B, (t)

where s’ is the derivative of s, B, is the r-radius ball and
A means the Lebesgue measure on the real line. Prac-
tical implementation to avoid noise and discretization
artifacts consists in using a wavelet support for the ball
B.(¢).

Finally, we mention the importance of a particular
set of points that convey most of informations about the
nonlinear dynamics of signal: the most singular compo-
nent. In fact, for a given point, the smaller value of
singularity exponent, the higher predictability implied
at this point [16]. It is has been established that the
critical transitions of the system occur at these most
singular points, and this fact has been successfully used
in many applications such as edge detection or data re-
construction [17].

(2)

2.1 Estimation of singularity exponents

The method used in this paper to estimate singularity
exponents is the continuous-wavelet-transform equiva-
lent of Eq. (2). This has the general advantage of cop-
ing with the particularities of real-world data such as

discretization, acquisition noise and long-range corre-
lations. Also, wavelet transform vanishes polynomial
contributions in the additive term o (rh(t)) which are a
common obstacle for the precise estimation of singular-
ity exponents. Overall, we examine the following power-
law relationship for each time instance:

Ty [|s']] (r,t) oc 7@ (3)
where Ty [2] (r,t) := (¥, x x) (t) stands for the contin-
uous wavelet transform, U,.(t) := r~1 ¥(r/t) and ¥ is a
wave-like function called mother wavelet.

It is appropriate to mention another advantage of
using the continuous wavelet transform for this estima-
tion: the possibility of computing the transform over a
set of non-integer scales in discretized signals. The scale
variable r in Eq. (3) could be assigned any non-integer
value, providing a smooth interpolation scheme for the
discrete-time signal.

2.2 MMF validation

It is easy to see that taking the logarithm of both sides
of Eq. (3) reveals a linear relationship between the loga-
rithm of the wavelet transform and the logarithm of the
scale. So it is possible to estimate the singularity expo-
nent h(t) at each time ¢ by performing a linear regression
of the wavelet transform vs. the scale in a log-log plot.
Therefore, Eq. (3) and consequently Eq. (1) are verified
for a given signal if we attain acceptable correlation co-
efficients for such linear regression. When this occurs,
the MMF is valid for the signal.

3. SPEECH SIGNALS IN THE
MICROCANONICAL FRAMEWORK

In this section we study the validity of MMF for speech
signals. In order to estimate the singularity exponents,
we use a slight modification of Eq. (3). Indeed, in our
experiment with speech signals, we observed that better
correlation coefficients are obtained when we take the
logarithm of both sides of Eq. (3) and divide with log(r),
so that we have the linear relationship:

logTu [$1(18) _ oy 1

h(t) (4)

log r log r

Then, by performing the linear regression, the singular-
ity exponent h(t) is estimated as the bias of this linear
relationship.

The wavelet we use is the Lorentzian wavelet. This
wavelet defines an accurate estimation for smaller expo-
nents, at the expense of a saturation of all exponents
> 1 [19]. This is desirable because small exponents are
the most informative ones and, in the presented case,
retrieved exponents are far from the saturation and so
it does not appear as an actual limitation. To perform
the regression we chose 10 scales which are log-uniformly
spaced between 1 and 100 samples (which correspond to
the interval from 62.5 us to 6.25 ms).

We first check the existence of the power-law scal-
ing Eq. (3) on phonemes, as they are the basic acoustic
speech units. All our experiments are carried out on
the TIMIT database [6]. We use the transcriptions pro-
vided by TIMIT to construct a test database of 3000

101



phonemes: for each phoneme family (vowels, fricatives,
stops, semi-vowels and glides, affricates and nasals) we
take 500 different instances of a representative phoneme.
The estimation of singularity exponents using Eq. (4) is
performed on the 500 instances and the resulting aver-
age correlation coefficients are reported in Table 1.

Next, we performed the same procedure over whole
sentences. 500 different speech signals with an approx-
imate length of 3-5 seconds were used for this experi-
ment. We obtained an average correlation coefficient of
0.96. The small loss compared to the average of values
in Table 1 (which is 0.98) is explained by the presence
of long segments of silence when we process whole sen-
tences.

Overall, these experiments show that excellent corre-
lation coefficients are obtained using our estimation pro-
cedure. First, this suggests that we achieve very precise
estimation of the singularity exponents. Second, it sug-
gests that the MMF is valid for speech signals. We can
thus proceed now to study how these exponents convey
useful information about the speech dynamics.

4. APPLICATION OF MMF FOR SPEECH
SEGMENTATION

Speech is a non-stationary signal which is formed by con-
catenation of small acoustic units called phonemes. The
automatic detection of boundaries between phonemes is
a challenging task and is still an open problem which has
many applications in speech technology. In Section 3 we
demonstrated the validity of MMF for speech signals.
Here, we present our observations on the instructive in-
formation of singularity exponents about the variable
temporal dynamics of speech signals.

Since different phonemes are basically different sig-
nals with different frequency content and statistical
properties, we expect the corresponding singularity ex-
ponents to have different behaviour inside the bound-
aries of each phoneme. In order to demonstrate these
changes, we provide a graphical presentation in Figure
1, showing the changes in distribution of singularity ex-
ponents conditioned on the time, p(h|t).

In Figure 1-top, the original speech signal is shown
and the phoneme boundaries are represented by vertical
red lines. These boundaries are extracted from the man-
ual transcription of TIMIT database. Figure 1-middle
displays the time evolution of the conditional distribu-
tion of singularity exponents. In the vertical axes we
show the rank of the singularity exponents in bins of 5
percentiles. Then, at each time instance ¢, we take a
30 ms window centred around ¢ and we accumulate the
exponents to the globally computed bins. As we want
to represent conditional probability each row is norm-
oo normalized. It is remarkable that there is a change
in the position of maxima and in the variabilities of h
distribution. Moreover, the distribution alternates from
uni-modal to multi-modal, with uni-modal cases centred
at the middle of the global range and multi-modal cases
typically with two modes: one at each extreme of the
range.

However, although these changes in distribution be-
haviour are visually apparent they would be extremely
difficult to detect numerically and automatically. Hence,

it would be appropriate to define a new measure to
exploit these distributive changes. With this purpose
in mind, notice that the easiest interpretation of the
changes in distributions of Figure 1-middle is the change
in averages. In other words, we expect that different
phonemes have different averages of singularity expo-
nents compared to their neighbouring phonemes. In or-
der to check this, we use the primitive of the singularity-
exponent function over time as an estimator of the in-
stantaneous average. Formally, we define the new func-

tional as: .

ACC(t) = / dr h(r)

to

(5)

The resulting functional is plotted in Figure 1-bottom
for the same speech signal as before. To enhance pre-
sentation of the values of resulting time varying func-
tion in an observable window, we detrend it. Just as
we expected, this new functional reveals the changes in
distribution in a more precise way. Indeed, inside each
phoneme the functional ACC' is almost linear (if we ne-
glect the small scale fluctuations). Moreover, there is
a clear change in the slope at the phoneme boundaries.
These slope changes are even able to identify the bound-
aries between extremely short phonemes, such as stops.
Extensive observations over different sentences confirms
this behaviour, and thus the strength of the proposed
functional, Eq. (5).

These experiments suggest that the singularity expo-
nents computed in the MMF convey indeed meaningful
information about the critical transitions in speech sig-
nals. They also suggest that we can readily use these
exponents to develop a new, robust method for phonetic
segmentation.

An accurate evaluation of such method requires the
implementation of a numerical algorithm for unsuper-
vised identification of breaking points in noisy piecewise
linear curves. This is the purpose of our ongoing re-
search. At the time of writing of this paper, we are
studying the use of Free Knot B-spline algorithms [14]
to achieve this goal.

The closest methods to ours that we found in the
literature are the ones in [7] and [4]. In the former, the
analysis of trajectory of the Variance Fractal Dimension
(VFD) is used for phonetic segmentation. In the lat-
ter, the authors propose a fractal based approach which
uses the transitions of the envelope of the local fractal
dimension to determine the boundaries between words
and phonemes. Performing an extensive comparison be-
tween these methods and ours is beyond the scope of
this paper, particularly since these methods — like ours,
for the moment — visually differentiate the phonemes
without giving an automatic segmentation procedure.
However, in our approach the latter could be solved by
a simple piece-wise linear approximation. Thus we can
fairly say that our approach is much easier to incorpo-
rate in an automatic segmentation algorithm than the
measures given in [7] and [4].

5. CONCLUSIONS

In this paper we first showed that MMF is a valid frame-
work for the study of speech signals. From this perspec-
tive, we then analyzed the local properties of speech sig-
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Phoneme type Vowel | Fricative | Stop | Semi Vowel & Glide | Affricate | Nasal
Phoneme Jaa/ /dh/ /b/ Jel/ /ch/ /en/
Average Correlation Coef. | 0.97 0.99 0.99 0.99 0.99 0.99

Table 1: The average correlation coefficients of the linear regression Eq. (4) for a representative phoneme of each 6

different families.

nals through the singularity exponents computed in the
MMF. We showed that these exponents are interestingly
informative about the speech dynamics. Finally we pro-
posed a geometrical quantifying measure that produces
clear and distinctive changes at phoneme boundaries,
and thus can be used for automatic text-independent
phonetic segmentation. We emphasize that the com-
plete application of the MMF framework for speech sig-
nal requires more accurate justifications to cope with all
the particularities of speech signals. Still, the study pre-
sented in this paper reveals the informativeness of the
singularity exponents, without any extra manipulations.
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Figure 1: TOP: A normalized speech signal from TIMIT database. The signal was sampled at 16 kHz. Manually-
positioned phoneme boundaries are marked with vertical red lines. MIDDLE: Joint histogram of the distribution of
singularity exponents (vertical axis) conditioned to the time window (horizontal axis). Red corresponds to maximum
probability and dark blue corresponds to zero probability. The horizontal axis is divided in 30 ms bins. The vertical
axis is divided in global 5-percentile bins, so that it is proportional to the global rank of the singularity exponents,
not to their value. This avoids low-probability distortions. BOTTOM: Proposed functional for the identification
of phoneme boundaries. It is remarkable that most phoneme boundaries co-localize with strong changes in slope. To
enhance presentation, the ACC functional presented in Eq. (5) has been globally detrended (for the whole sentence,
not the presented portion).
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