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ABSTRACT
This work proposes a maximum a posteriori (MAP) based
parameter learning algorithm for acoustic-to-articulatory in-
version. Inversion method is based on single global linear
dynamic system (GLDS) representation of acoustic and ar-
ticulatory data. MAP based learning algorithm considers a
prior distribution for the parameter set as well as the likeli-
hood of the training data. Therefore in this paper, we investi-
gate the selection of prior distributions with hyperparameters
for GLDS to improve the performance of articulatory inver-
sion. The performance of the proposed learning algorithm
and comparison of it with the maximum likelihood (ML)
based learning method are examined on an extensive set of
examples. These results show that the performance of the ar-
ticulatory inversion method based on GLDS is significantly
improved via MAP based learning algorithm.

1. INTRODUCTION

Electromagnetic Articulography (EMA) Trajectories provide
the movement of certain articulators during a speech utter-
ance. They contain useful information about speech pro-
duction and this information can be used in a variety of
speech applications including speech recognition and syn-
thesis. Therefore, the reliable estimation of articulatory tra-
jectories could improve performance of these applications.
Recently, numerous methods are proposed to find reliable es-
timates of articulatory trajectories. Among them, [1, 2] uses
neural network and mixture density network. Other methods
given in the literature are GMM regression [3, 4], HMM [5],
SVM regression [6, 7] and codebook usage [8]. A combina-
tion of acoustic and visual features is used in [9, 10].

Consideration of articulatory inversion as a state esti-
mation problem via state space representation can be seen
in [11, 12, 13]. In state space representation, the position
of the each articulator is considered as a state of the dy-
namic system and they are governed by state equation. The
observations are the acoustic (and/or visual) data like Mel-
frequency cepstral coefficients (MFCC), and the transforma-
tion from acoustic to articulatory data is controlled via ob-
servation equation. The observation equation is either a non-
linear [12, 13] or a linear affine function [11]. Studies in the
literature estimate the parameters of the model by ML crite-
rion [12, 13, 11]. The data used in parameter estimation, i.e.
the training data consists of articulatory and acoustic vector
pairs.

State space representation of articulatory inversion prob-
lem gives a compact formulation so that filtering and smooth-
ing can be applied relatively easily. For this purpose
Bayesian recursive estimation (i.e. Kalman filter etc.) can

be used. The performance of the system is directly related to
appropriate modeling of the state and observation, and the ac-
curacy of the estimation of model parameter set. Appropriate
modeling may not be possible due to uncertainties in the sys-
tem structures. The accuracy of the parameter estimation is
related to the adequacy and consistency of the training sam-
ples in the training database. If any one of them (modeling
and parameter estimation problems) is poor, the performance
of the inversion system will degrade.

To avoid these types of problems, in this paper we pro-
pose a MAP based learning algorithm for a single GLDS to
be used in estimation of articulatory trajectories. MAP based
learning algorithm use some prior information about model
parameters. Therefore, we also propose a prior density se-
lection method to improve performance of the articulatory
inversion. We also compare the performances of both ML
and MAP based learning algorithms in various experiments.

The rest of the paper is organized as follows: Sec.2 gives
problem formulation of articulatory inversion based on sin-
gle global linear dynamic system (GLDS). Sec.3 describes
learning and inference methods for GLDS. The experimen-
tal results are given in Sec.4. Sec.5 presents conclusions and
future work plan.

2. ARTICULATORY INVERSION BASED ON GLDS

The acoustic-to-articulatory inversion problem can be con-
verted into the state estimation problem of a single global
linear dynamic system (GLDS). The dynamics of articula-
tion and acoustic-to-articulatory transform are characterized
via piece-wise affine functions given as follows.

xk+1 = Fxk +u+wk (1)
zk = Hxk +d + vk (2)

where
• xk ∈ Rnx denotes the continuous-valued state vector re-

lated to articulatory data with dimension of nx
• zk ∈ Rnz denotes the observation vector related to the

acoustic data with dimension of nz
• wk and vk are Gaussian white noise with corresponding

covariances Q ∈ Rnx×nx and R ∈ Rnz×nz

wk ∼N (wk;0,Q)

vk ∼N (vk;0,R)

• Initial state x1 has Gaussian distribution with following
parameters

x1 ∼N (x1; x̄,Σ)
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• F ∈ Rnx×nx and H ∈ Rnz×nx are state transition and ob-
servation matrices respectively. u ∈ Rnx and d ∈ Rnz are
corresponding bias vectors.

• The over all parameter set of GLDS is Θ =
{x̄,Σ,H,d,R,F,u,Q}

Assume that we have a training database D = {X ,Z} that
links acoustic observations Z and articulatory observations
X . The problem of the acoustic-to-articulatory inversion in-
volves two separate tasks, that we may call “learning” and
“inference”:
• LEARNING: Learning is the estimation of the model pa-

rameters Θ given the training data set D and prior dis-
tribution p(Θ). We examine both maximum likelihood
(ML) and a maximum a posterior (MAP) learning meth-
ods. That is,

Θ̂ML = argmax
Θ

p(Z,X |Θ),

Θ̂MAP = argmax
Θ

p(Z,X |Θ)p(Θ).

• INFERENCE: The estimation of the articulatory state xk
given acoustic data z1:τ = {z1, . . . ,zτ} and estimated pa-
rameter set Θ̂. Estimated state is found via minimum
mean square error (MMSE) method as follows.

xk|τ = E[xk|z1:τ ]

where E[·] is the expectation operator. If τ = k, the esti-
mation is called filtering; if τ = N (where N is the length
of the observation sequence), the estimation is called
fixed-interval smoothing.

The following two sections explore, in detail, the problems
of learning Θ from measured X ,Z, and of inferring X from
measured Z.

3. LEARNING AND INFERENCE

3.1 Learning
For the estimation of the parameter vector Θ, suppose that
training database D contains L training sequences that con-
tains acoustic observations Z = {zl

1:Nl
}L

l=1 and articulatory
observations, X = {xl

1:Nl
}L

l=1. Suppose that each of the lth
sequence contains Nl vectors, that is xl

1:Nl
= {xl

1, . . . ,x
l
Nl
} and

zl
1:Nl

= {zl
1, . . . ,z

l
Nl
}.

3.1.1 Maximum likelihood (ML) Based Learning

In the maximum likelihood learning criterion, the parame-
ter set Θ can be estimated via maximizing the logarithm of
the joint likelihood function L(Θ) = p(Z,X |Θ) using training
data set D.

Θ̂ML = argmax
Θ

lnL(Θ) (3)

Under independent observation sequences assumption, L(Θ)
can be written as follows

L(Θ) =
L

∏
l=1

p(xl
1:Nl

,zl
1:Nl
|Θ)

=
L

∏
l=1

(
p(xl

1|Θ)
Nl

∏
k=1

p(zl
k|xl

k,Θ)
Nl

∏
k=2

p(xl
k|xl

k−1,Θ)

)
(4)

Table 1: ML Based Parameter Estimation for GLDS

Define the following summations:

N , ∑L
l=1 Nl −1, x̄c , 1

N ∑L
l=1 ∑Nl−1

k=1 xk.

x̄p , 1
N ∑L

l=1 ∑Nl
k=2 xk−1, z̄c , 1

N+L ∑L
l=1 ∑Nl

k=1 zk.

ML based estimated parameters:

ˆ̄x = 1
L ∑L

k=1 xl
1, Σ̂ = 1

L ∑L
l=1(x

l
1− ˆ̄x)(xl

1− ˆ̄x)T

F̂ =
(

∑L
l=1 ∑Nl

k=2(x
l
k− x̄c)(xl

k−1− x̄p)T
)

×
(

∑L
l=1 ∑Nl

k=2(x
l
k−1− x̄p)(xl

k−1− x̄p)T
)−1

û = x̄c− F̂ x̄p

Q̂ = 1
N ∑L

l=1 ∑Nl
k=2(x

l
k− F̂xl

k−1−u)(xl
k− F̂xl

k−1−u)T

Ĥ =
(

∑L
l=1 ∑Nl

k=1(z
l
k− z̄c)(xl

k− x̄c)T
)

×
(

∑L
l=1 ∑Nl

k=1(x
l
k− x̄c)(xl

k− x̄c)T
)−1

d̂ = z̄c− Ĥx̄c

R̂ = 1
N+L ∑L

l=1 ∑Nl
k=1(z

l
k− xl

k− d̂)(zl
k− xl

k− d̂)T

Taking the logarithm of L(Θ) and substituting in (3) gives

Θ̂ML =argmax
Θ

(
L

∑
l=1

Nl

∑
k=1

ln p(zl
k|xl

k,H,d,R)

+
L

∑
l=1

ln p(xl
1|x̄,Σ)+

L

∑
l=1

Nl

∑
k=2

p(xl
k|xl

k−1,F,u,Q)

)
(5)

where,

p(xl
1|x̄,Σ) , N (xl

1; x̄,Σ) (6)

p(zl
k|xl

k,H,d,R) , N (zl
k;Hxl

k +d,R) (7)

p(xl
k|xl

k−1,F,u,Q) , N (xl
k;Fxl

k−1 +u,Q) (8)

Derivatives of (5) for each unknown parameter, and roots
of the equations that are obtained by setting the derivatives
equal to zero are listed in Table 1. These roots are the esti-
mation formulae of the unknown parameters.

3.1.2 Maximum a Posteriori (MAP) Based Learning

Maximum likelihood estimation of a GLDS tends to over-fit
the training data, leading to degraded test-set performance.
In order to improve generalizability of the learned parame-
ters, we propose a regularized learning algorithm based on
MAP (maximum a posteriori) learning. Specifically, we
propose to impose a prior distribution p(u,F,Q) that en-
courages the regression matrix, F , to take values slightly
smaller (therefore slightly more generalizable [14]) than its
maximum-likelihood values. In the maximum a posteriori
learning criterion, the parameter set Θ is estimated based
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on training data set D = {X ,Z} and prior distribution p(Θ),
therefore

In the maximum a posteriori learning criterion, the pa-
rameter set Θ is estimated based on the training data set D
and prior distribution p(Θ), therefore

Θ̂MAP = argmax
Θ

lnL(Θ)+ ln p(Θ) (9)

where, L(Θ) is the likelihood function defined in (4) and
p(Θ) is the prior distribution for the model parameter set Θ,
which can be defined as follows. In this work, the model pa-
rameter set is divided into two subsets Θ = {Θ1,Θ2}, where
Θ1 = {x̄,Σ,H,d,R} and Θ2 = {F,Q}. where, F , [u,F ] is
the augmented parameter. Under the prior independence as-
sumption, the joint prior density can be written as follows

p(Θ) = p(Θ1)p(Θ2) (10)

In this work prior density p(Θ1) is assumed to be noninfor-
mative uniform prior, i.e. p(Θ1) = constant. Under this as-
sumption, (9) reduces to the

Θ̂MAP = argmax
Θ

lnL(Θ)+ ln p(F,Q) (11)

The joint prior distribution for p(F,Q) can be written as

p(F,Q) = p(F|Q)p(Q) (12)

Now, we need to specify the prior distribution for p(F|Q)
and p(Q). For this purpose, the conjugate prior distributions
are chosen. A prior distribution is said to be a conjugate
prior distribution for a given model if the resulting posterior
distribution is from the same family as the prior. The prior
distribution p(F|Q) is the matrix normal distribution [15, 16]
defined as

p(F|Q) , N (F;0,Q,Ω)

∝ |Ω−1| nx
2 |Q−1| nx+1

2 exp
(
−1

2
trΩ−1FT Q−1F

)
(13)

where, 0 is the mean of the matrix normal distribution. Ω and
Q are two corresponding covariances. The prior distribution
p(Q) is the inverse Wishart distribution [15, 16] defined as
follows

p(Q) , W −1(Q;Ψ,v)

∝ |Q−1| v+nx+1
2 exp

(
−1

2
trQ−1Ψ

)
(14)

where,v and Ψ are the degrees of freedom and scale matrix
for inverse Wishart distribution. Combining (13) and (14),
the joint prior density p(F,Q) becomes

p(F,Q) ∝ |Ω−1| nx
2 |Q−1| v+2nx+2

2

× exp
(
−1

2
tr

(
Ω−1FT Q−1F+Q−1Ψ

))
(15)

Substituting (15) into (11) and rearranging, the maximization
criterion of Θ2 can be written as follows.

Θ̂MAP =argmax
Θ

{
lnL(Θ)+ ln |Ω−1| nx

2 ||Q−1| v+2nx+2
2

× exp
(
−1

2
tr

(
Ω−1FT Q−1F+Q−1Ψ

))} (16)

Table 2: MAP Based Parameter Estimation for GLDS

MAP based estimated parameters:

F̂ ,
[
û, F̂

]
,xk

l ,
[
1,(xl

k)
T
]T

,ϒ , F̂Ω−1F̂T +Ψ

F̂ =
(

∑L
l=1 ∑Nl

k=2 xl
kx

l
k−1

)

×
(

∑L
l=1 ∑Nl

k=2 xl
k−1x

l
k−1 +Ω−1

)−1

Q̂ = ∑L
l=1 ∑

Nl
k=2(xl

k−F̂xl
k−1)(xl

k−F̂xl
k−1)T +ϒ

∑L
l=1 ∑

Nl
k=2 +v+2nx+2

Taking derivatives of (16) for each unknown parameter, and
setting derivatives equal to zero estimation formulas can be
obtained. These formulas are given in Table 21.

3.2 Inference

After the parameter learning stage, the filtered state x̂k|k can
be estimated by Kalman filter (KF) in a recursive manner.
Smoothing is also a standard procedure in Kalman filtering.
In this work we have obtained smoothed estimates by apply-
ing KF in forward and backward direction. Smoothed states
x̂k|N are obtained as a combination of forward and backward
estimates. Kalman filtering and smoothing algorithms are
described in [17] in detail.

4. EXPERIMENTS

4.1 Experimental Conditions

In this work, we use the MOCHA database [18]. The acous-
tic data and EMA trajectories of one female talker (fsew0)
are used; these data include 460 sentences. Audio features
(Mel-frequency cepstral coefficients (MFCC)) were com-
puted using a 36 ms window with 18 ms shift. The articula-
tory data are EMA trajectories, which are the X and Y coor-
dinates of the lower incisor, upper lip, lower lip, tongue tip,
tongue body, tongue dorsum and velum. EMA trajectories
are normalized by the methods suggested in [1] and down-
sampled to match the 18 ms shift rate. All the model param-
eters of GLDS are tested using 10-fold cross-validation. For
each fold, nine tenths of the data (414 sentences) are used
for training and one tenth (46 sentences) for testing. Cross-
validation performance measures (RMS error and correlation
coefficient) are computed as the average of all ten folds.

4.2 Hyperparameter Assessment

The parameters of the prior distributions are called hyper-
parameters and they must be estimated to solve articulatory
inversion problem. The hyperparameter set of the proposed
model is θh = {Ω,Ψ,α,v}. In this work, we choose the fol-

1Since the estimation formulae of the rest of the parameters are same as
given in Table 1, we do not repeat them in Table 2
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lowing parameters for joint prior distribution.

Ω−1 = α
L

∑
l=1

Nl

∑
k=2

xl
k−1x

lT
k−1

Ψ =
1
v

Inx×nx

where, xk
l is the augmented articulatory state trajectories de-

fined as xk
l ,

[
1,(xl

k)
T
]T In this way, prior distribution be-

comes an invariant prior distribution [15]. Degree of freedom
of the inverse Wishart distribution v is also fixed and is equal
to the total number of observations. That is,

v =
L

∑
l=1

Nl −1.

Therefore, the only unknown hyperparameter is {α}. The
parameter α is estimated via trial and error. In this work, we
test the values of α ∈ S = {0.1,0.3,0.5}.

4.3 Performance Measures
The performance of the algorithms is measured using three
performance measures, namely, RMS error, normalized
RMS error and correlation coefficient, all of which are de-
scribed in [1, 4, 10].
• RMS error:

E i
RMS ,

√
1
N

N

∑
k=1

(xi
k− x̂i

k)
2, i = 1, . . . ,m

where xi
k and x̂i

k are true and estimated position, respec-
tively, of the ith articulator in the kth frame.

• Normalized RMS error:

E i
NRMS , E i

RMS
σi

, i = 1, . . . ,m

where σi is the standard deviation of ith articulator xi.
• Correlation coefficient:

ρ i
x,x̂ , ∑N

k=1(x
i
k− x̄i

k)(x̂
i
k− ¯̂xi

k)√
∑N

k=1(x
i
k− x̄i

k)
2
√

∑N
k=1(x̂

i
k− ¯̂xi

k)
2

for i = 1, . . . ,m where x̄i and ¯̂xi are the average position
of true and estimated ith articulator respectively.

4.4 Experimental Results
Experimental results of the proposed method are given in this
sub-section. The comparison of the learning methods based
on ML and MAP criteria for a single GLDS in terms of RMS
error and correlation coefficient can be seen in Fig.1. Ex-
amination of the figure shows that the MAP based learning
method significantly improves the performance of the artic-
ulatory inversion. The performance of the proposed algo-
rithm is tested for various α values and it is observed that
α = 0.3 gives the best performance for MAP based learn-
ing algorithm. The RMS error and the correlation coefficient
between the true (measured) and the estimated articulatory
trajectories for filtering mode are about 2.34 mm and 0.52
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Figure 1: RMS error (-a-) and correlation coefficient (-b-)
between true (measured) and estimated articulatory trajecto-
ries for ML and MAP (with various α values) learning, and
corresponding filtered and smoothed estimation results.

for ML learning method while the corresponding results for
MAP (α = 0.3) based learning method are about 1.93 mm
and 0.59 respectively. That means MAP based learning al-
gorithm in filtering mode reduces RMS error about 17.5%
(from 2.34 mm to 1.93 mm) and improve the correlation co-
efficients about 13.4% (from 0.52 to 0.59). When we con-
sider inferences based on smoothed estimate, The RMS er-
ror and correlation coefficient for ML based learning method
are about 2.3 mm and 0.59, corresponding results for MAP
(α = 0.3) based learning method are 1.85 mm and 0.65. That
means MAP based learning algorithm in smoothing reduces
RMS error about 18% (from 2.26 mm to 1.85 mm) and im-
prove the correlation coefficients about 10% (from 0.59 to
0.65). The second observation from Fig.1 is that the smooth-
ing is highly improves the performance compared to filtering.
A similar result is reported in [3, 4] for articulatory inversion
based on GMM and in [1] for articulatory inversion based on
(TMDN). In our work smoothing reduces the RMSE from
2.34 mm to 2.26 mm (a 3.4% relative improvement) and im-
proves the correlation coefficient about from 0.52 to 0.59
(a 13.4% relative improvement) when ML based learning
is used. Similarly, smoothing reduces RMSE about 4.1%
(from 1.93 mm to 1.85 mm) and improves correlation coeffi-
cient about 10.1% (from 0.59 to 0.65) for the MAP (α = 0.3)
based learning method.

Fig.2 provides more details regarding the utility of MAP
based learning method in articulatory inversion. The ab-
scissa distinguishes different articulators. As an example, in
Fig.2, normalized RMS error for Y axis of upper lip (uly)
reduced from 1.13 to 0.85. That means, there is a 24.7%
relative error reduction. In general, this figure denotes that
MAP based learning algorithm reduces normalized RMS
about (14-28%). Fig.3 illustrates an example of the estimated
(based on ML and MAP (α = 0.3) and the true x-coordinates
of articulatory trajectories for lower incisor. The utterance is
taken form MOCHA database.

5. CONCLUSION AND FUTURE WORK

In this paper, we have examined parameter estimation meth-
ods that are based on ML and MAP criteria for acoustic-to-
articulatory inversion which is done by using a single global
linear dynamic system (GLDS). The main aim of this work
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Figure 3: An example of estimated (based on ML and MAP
method) and true articulatory trajectories of x-coordinate for
lower incisor.(taken from MOCHA database)

is to show that MAP based parameter estimation method sig-
nificantly improves the performance of the articulatory in-
version. Experiments have been conducted on the MOCHA
databases. In the literature, [11] uses a single GLDS in artic-
ulatory inversion with similar experimental setup. They esti-
mate the model parameter set via ML criterion and their best
RMSE and correlation coefficient results between the true
(measured) and estimated articulatory trajectories are 2.15
mm and 0.59 respectively. According to the experimental re-
sults given in Sec. 4.4, our best results are obtained via MAP
based learning algorithm by using smoothing method. The
RMS error and correlation coefficient are about 1.85 mm and
0.65 respectively, which is significantly better than the results
of [11]. The main reason of the improvement is using MAP
based learning instead of ML and also smoothing instead of
filtering.

Our future work plan is to generalize the single GLDS to
a multiple models dynamic system which is known as jump
Markov linear system (JMLS) or switching linear dynamic
system (SLDS) and use MAP based learning. The prelimi-
nary experimental results showed that MAP based learning
algorithm is also improves the performance of articulatory
inversion when multiple models are used.
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